Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-29T07:18:51.939Z Has data issue: false hasContentIssue false

The Role of the Actinides in a Performance Assessment of a Nuclear Waste Repository. SKB's Supporting Actinide Research

Published online by Cambridge University Press:  01 February 2011

Lars Werme
Affiliation:
lars.werme@fysik.uu.se, Uppsala University, Dept. Physics and Astronomy, Uppsala, Sweden
Sergei Butorin
Affiliation:
sergei.butorin@fysik.uu.se, Uppsala University, Dept. Physics and Astronomy, Uppsala, Sweden
Peter M Oppeneer
Affiliation:
peter.oppeneer@fysik.uu.se, Uppsala University, Dept. Physics and Astronomy, Uppsala, Sweden
Get access

Abstract

After a few hundred years, the actinides will dominate the radiotoxicity of spent nuclear fuel. This does not necessarily mean that the actinides will dominate the dose to organisms at the surface above a geologic repository. Quite the contrary, in most performance assessments this dose is dominated by long-lived fission products, activation products and, in the very long perspective, actinide daughters.

This makes the far-field migration properties of the actinides less interesting for further research. There are, however, other aspects of the presence of actinides in spent nuclear fuel and some of these and SKB's research in these fields is presented and discussed here.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1SKB, SR 97 – Deep repository for spent nuclear fuel. SR 97 – Post-closure safety. Main report – Vol. I, Vol. II and Summary. Report TR-99-06, Svensk Kärnbränslehantering AB 1999.Google Scholar
2SKB, Long-term safety for KBS-3 repositories at Forsmark and Laxemar – a first evaluation. Main Report of the SR-Can project. Technical Report TR-06-09 (2006).Google Scholar
3Nagra, Project Opalinus Clay. Safety Report. Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste (Entsorgungsnachweis). Technical Report 02-05 (2002).Google Scholar
4http://www.sckcen.be/en/Our-Research/Research-domains/Disposal-of-radioactive- radioactivewaste/Safety-assessment-for-geological-disposal waste/5. Hedin, A. Spent nuclear fuel – how dangerous is it? SKB TR-97-13, svensk Kärnbränslehantering AB (1997).Google Scholar
6 Matzke, H j. Blank, H. Coquerelle, M. Lassmann, K. Ray, I.L.F. Ronchi, C. Walker, C.T. J. Nucl. Mater. 166 (1989) 165.Google Scholar
7 Forsyth, R. S. Werme, L. O, J. Nucl. Mater. 190 (1992) 3 Google Scholar
8 Clarens, F. Serrano-Purroy, D., Martínez-Esparza, A., Wegen, D. Gonzalez-Robles, E., Pablo, J. de, Casas, I. Gimenez, J., Christiansen, B. Glatz, J. P. Mater. Res. Soc. Symp. Proc. Vol. 1107 (2008).Google Scholar
9 Hanson, B. Stout, R. Mater. Res. Soc. Symp. Proc. Vol. 824 (2004) 89.Google Scholar
10 Hanson, B. Friese, J. Soderquist, C. Mater. Res. Soc. Symp. Proc. Vol. 824 (2004) 113.Google Scholar
11 Fors, P. Carbol, P. Winkel, Van, Spahiu, K. J. Nucl. Mater. 394 (2009) 1.Google Scholar
12 Albinsson, Y. Forsyth, R. Skarnemark, G. Skålberg, M., Torstenfelt, B. Werme, L. Mat. Res. Soc. Symp. Proc. Vol. 176 (1990) 559.Google Scholar
13 Ramebäck, H., Skålberg, M., Eklund, U. B. Kjellberg, L. Werme, L. Radiochim. Acta 82 (1998) 167.Google Scholar
14 Idemitsu, K. Furuya, K. Tachi, Y. Inagaki, Y. Mat. Res. Soc. Symp. Proc. Vol. 333 (1994) 939.Google Scholar
15 Torstenfelt, B. Allard, B. Migration of fission products and actinides in compacted bentonite, Technical Report 86–14 (1986), Svensk Kärnbränslehantering ABGoogle Scholar
16 Ramebäck, H., Albinsson, Y. Skålberg, M., Eklund, U. B. Kjellberg, L. Werme, L. J. Nucl. Mater. 277 (2000) 208.Google Scholar
17 Wahlgren, U. Investigating the thermodynamics of the reduction of U(VI) to U(V) by Fe(II) using ab initio methods, SKB Technical Report TR-03-14, Svensk Kärnbränslehantering AB (2003).Google Scholar
18 Privalov, T. Schimmelpfenning, B. Wahlgren, U. Grenthe, I. J. Phys. Chem. A 107 (2003) 587.Google Scholar
19 Privalov, T. Macak, P. Schimmelpfennig, B. Fromager, E. Grenthe, I. Wahlgren, U. J. Am. Chem. Soc. 126 (2004) 9801.Google Scholar
20 Macak, P. Fromager, E. Privalov, T. Schimmelpfennig, B. Grenthe, I. Wahlgren, U. J. Phys. Chem. A 109 (2005) 4950.Google Scholar
21 Tsushima, S. Wahlgren, U. Grenthe, I. J. Phys. Chem. A 110 (2006) 9175.Google Scholar
22 Butorin, S. J. Electron Spectrosc. Relat. Phenom. 110–111 (2000) 213.Google Scholar
23 Butorin, S. M. Kvashnina, K. Modin, A. Nordgren, J. Guo, J H, Shuh, D. K. Werme, L. Reduction of Pu(VI) on Fe surfaces: soft x-ray absorption and resonant inelastic scattering study, SKB Technical Report TR-09-08, Svensk Kärnbränslehantering AB (2009).Google Scholar
24 Sattony, G. Garrido, F. Thome, L. Philos. Mag. Lett. 84 (2004) 115.Google Scholar
25 Roudil, D. Deschanels, X. Trocellier, P. Jegou, C. Peuget, S. Bart, J. M. J. Nucl. Mater. 327 (2004) 226.Google Scholar
26 Garrido, F. Nowicki, L. Sattonnay, G. Sauvage, T. Thome, L. Nucl. Instrum. and Meth. Phys. Res. B 219&220 (2004) 196.Google Scholar
27 Yun, Y. Eriksson, O. Oppeneer, P. M. J. Nucl. Mater. 385 (2009) 72 Google Scholar
28 Yun, Y. Eriksson, O. Oppeneer, P. M. J. Nucl. Mater. 385 (2009) 510 Google Scholar