Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T02:25:09.005Z Has data issue: false hasContentIssue false

The role of the micro-porous layer (MPL) in fuel cells: neutron imaging and advanced electrochemical analysis study.

Published online by Cambridge University Press:  21 March 2013

Pierre Boillat
Affiliation:
Electrochemistry Laboratory (ECL), Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
Pierre Oberholzer
Affiliation:
Electrochemistry Laboratory (ECL), Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
Eberhard H. Lehmann
Affiliation:
Neutron Imaging and Activation group (NIAG), Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
Günther G. Scherer
Affiliation:
Electrochemistry Laboratory (ECL), Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
Alexander Wokaun
Affiliation:
General Energy Department (ENE), Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
Get access

Abstract

The effect of the micro-porous layer (MPL) in polymer electrolyte fuel cells (PEFCs) was studied by a combination of in situ visualization of the liquid water distribution and advanced electrochemical analysis using helox and O2 pulses. Four cells with and without MPLs on the anode and cathode side were tested. Visualization studies showed that the significant changes in performance observed when using an MPL on the cathode side cannot be related to a reduction of the water content in the cathode side diffusion layer (GDL). The helox/O2 pulse analysis indicated that two different mechanisms are responsible for the performance loss without an MPL.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Becker, J., Wieser, C., Fell, S., and Steiner, K., Int. J. Heat Mass. Tran. 54, 1360 (2011).CrossRefGoogle Scholar
Atiyeh, H. K., Karan, K., Peppley, B., Phoenix, A., Halliop, E., and Pharoah, J., J. Power Sources 170, 111 (2007).CrossRefGoogle Scholar
Owejan, J. P., Owejan, J. E., Gu, W., Trabold, T. A., Tighe, T. W., and Mathias, M. F., J. Electrochem. Soc. 157, B1456 (2010).CrossRefGoogle Scholar
Nam, J. H., Lee, K.-J., Hwang, G.-S., Kim, C.-J., and Kaviany, M., Int. J. Heat Mass. Tran. 52, 2779 (2009).CrossRefGoogle Scholar
Weber, A. Z. and Newman, J., J. Electrochem. Soc. 152, A677 (2005).CrossRefGoogle Scholar
Oberholzer, P., Boillat, P., Siegrist, R., Kaestner, A., Lehmann, E. H., Scherer, G. G., and Wokaun, A., Electrochem. Commun. 20, 67 (2012).CrossRefGoogle Scholar
Boillat, P., Oberholzer, P., Kaestner, A., Siegrist, R., Lehmann, E. H., Scherer, G. G., and Wokaun, A., J. Electrochem. Soc. 159, F210 (2012).CrossRefGoogle Scholar
Oberholzer, P., Analysis of Water Transport in Polymer Electrolyte Fuel Cells using Neutron Imaging, PhD thesis, Swiss Federal Institute of Technology Zürich (ETHZ), 2012.Google Scholar
Wang, X. and Nguyen, T. V., J. Electrochem. Soc. 157, B496 (2010).CrossRefGoogle Scholar
Gostick, J. T., Ioannidis, M. A., Fowler, M. W., and Pritzker, M. D., Electrochem. Commun. 11, 576 (2009).CrossRefGoogle Scholar
Medici, E. F. and Allen, J. S., J. Electrochem. Soc. 157, B1505 (2010).CrossRefGoogle Scholar
Fishman, Z. and Bazylak, A., J. Electrochem. Soc. 158, B846 (2011).CrossRefGoogle Scholar
Kocha, S. S., Principles of MEA preparation, volume 3 of Handbook of Fuel Cells: Fundamentals, Technology and Applications, chapter 43, pp. 538565, Wiley, 2003.Google Scholar
Schulenburg, H., Schwanitz, B., Linse, N., Scherer, G. G., Wokaun, A., Krbanjevic, J., Grothausmann, R., and Manke, I., J. Phys. Chem. C 115, 14236 (2011).CrossRefGoogle Scholar