Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T10:03:32.609Z Has data issue: false hasContentIssue false

The Role of Vertical Exchange in the Growth of GaAs/AlAs Lateral and Vertical Superlattices

Published online by Cambridge University Press:  15 February 2011

Axel Lorke
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106, USA
Mohan Krishnamurthy
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106, USA
Pierre M. Petroff
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106, USA
Get access

Abstract

We report on the formation of lateral superlattices in short period vertical GaAs/AlAs superlattices. To explain the observed self-organized phase separation, we propose a model of vertical intermixing, driven by the exchange of Ga on the surface with impinging Al atoms. The model correctly describes the formation of lateral superlattices for both integer and fractional monolayer deposition. It also predicts a far-reaching intermixing at GaAs-AlAs interfaces. Insitu RHEED studies of the initial growth stage of both GaAs-AlAs and AlAs-GaAs interfaces support the assumption of an asymmetric exchange at the growing surface and confirm the longrange Ga migration predicted by the model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gaines, J. M., Petroff, P. M., Kroemer, H., Simes, R. J., Geels, R. S. and English, J. H., J. Vac. Sci. Technol. B 6, 1378 (1988).Google Scholar
2. Fukui, T. and Saito, H., Appl. Phys. Lett. 50, 824 (1987).Google Scholar
3. Tanaka, M. and Sakaki, H., Appl. Phys. Lett. 54 (1989), 1326.Google Scholar
4. Miller, M. S., Weman, H., Pryor, C., Krishnamurthy, M., Petroff, P. M., Kroemer, H. and Merz, J. L., Phys. Rev. Lett. 68, 3464 (1992) and references therein.Google Scholar
5. Tsuchiya, M., Petroff, P. M., and Coldren, L. A., Appl. Phys. Lett. 54, 1690 (1989).Google Scholar
6. Horikoshi, Y., Yamaguchi, H., Briones, F., and Kawashima, M., J. Chrystal Growth 105, 326 (1990).Google Scholar
7. Krishnamurthy, M., Miller, M. S., and Petroff, P. M., Appl. Phys. Lett. 61, 2990 (1992).Google Scholar
8. Krishnamurthy, M., Lorke, A., Wassermeier, M., Williams, D. R. M., and Petroff, P. M., J. Vac. Sci. Technol. B, to be published.Google Scholar
9. Bressler-Hill, V., Lorke, A., Pond, K., Petroff, P. M., and Weinberg, H., unpublished.Google Scholar
10. Williams, D. R. M. and Krishnamurthy, M., Appl. Phys. Lett. to be published.Google Scholar
11. Moison, J. M., Houzay, F., Barthe, F., Gérard, J. M., Jusserand, B., Massies, J. and Turco-Sandroff, F. S., J. Cryst. Growth, 111, 141 (1991).Google Scholar
12. Jusserand, B. and Mollot, F., Appl. Phys. Lett. 61, 423 (1992).Google Scholar
13. Yamaguchi, H. and Horikoshi, Y., J. Appl. Phys. 68, 1610 (1990).Google Scholar
14. Johnson, F. G., Olmsted, B. L., Chen, S., and Wicks, G. W., J. Electron. Mater. 22, 331 (1993).Google Scholar
15 Sakaki, H., in III-V Semiconductor Materials and Devices, edited by Malik, R. J. (Elsevier Science Publishers, B. V., 1989), pp. 217330 and references therein.Google Scholar