Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T08:56:32.486Z Has data issue: false hasContentIssue false

Roll-to-Roll Apparatus for Residue-Free Direct Stamping of Functional Nano-Inks

Published online by Cambridge University Press:  22 February 2013

Jiseok Kim
Affiliation:
Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, B.C. Canada V3T 0A3
Ting Hsieh
Affiliation:
Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, B.C. Canada V3T 0A3
Woo Soo Kim
Affiliation:
Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, B.C. Canada V3T 0A3
Get access

Abstract

A tabletop prototype of a roll-to-roll (R2R) direct stamping apparatus has been developed. The prototype is about 100 cm long, 30 cm wide and 40 cm high and is operational up to the web speed of 1 m/min. While upper rolls carry a web with a patterned stamp on it clockwise, a sprayer on top of the R2R apparatus dispenses the nano-ink to fill in the stamp. Two other rolls with adhesive films completely remove the residual layer on the stamp. Final products remain on the substrate after de-stamping in which the web rolls up and the substrate moves to the further right. This roll-to-roll direct stamping apparatus demonstrates high throughput and material efficiency for fabrication of flexible micro- and nano-electronic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gundlach, D. J., Nat. Mater. 6, 173 (2007).CrossRefGoogle Scholar
Oh, K., Lee, B. H., Hwang, J. K., Lee, H., Lee, K. H., Im, S., and Sung, M. M., Small 5, 558561 (2009).CrossRefGoogle Scholar
Ko, S. H., Park, I., Pan, H., Grigoropoulos, C. P., Pisano, A. P., Luscombe, C. K., and Frechet, Jean M. J., Nano Lett. 7, 18691877 (2007).CrossRefGoogle Scholar
Hwang, J. K., Cho, S., Dang, J. M., Kwak, E. B., Song, K., Moon, J., and Sung, M. M., Nat. Nanotechnol. 5, 742748 (2010).CrossRefGoogle Scholar
Kim, J., Wubs, K., Bae, B. S., and Kim, W. S., Sci. Technol. Adv. Mater. 13, 035004 (2012).CrossRefGoogle Scholar
Ahn, S. H. and Guo, L. J., ACS Nano 3, 23042310 (2009).CrossRefGoogle Scholar
Park, H. J., Kang, M. G., Ahn, S. H., and Guo, L. J., Adv. Mater. 22, E247E253 (2010).CrossRefGoogle Scholar
Jeans, A., Almanza-Workman, M., Cobene, R., Elder, R., Garcia, R., Gomez-Pancorbo, F., Jackson, W., Jam, M., Kim, H. J., Kwon, O., Luo, H., Maltabes, J., Mei, P., Perlov, C., Smith, M., Taussig, C., Jeffrey, F., Braymen, S., Hauschildt, J., Junge, K., Larson, D., and Stieler, D., Proc. SPIE 7637, 763719 (2010).CrossRefGoogle Scholar