No CrossRef data available.
Published online by Cambridge University Press: 27 February 2013
The electrodeposition of hydrated ruthenium dioxide (hRuO2) on Ti interdigitated current collectors deposited onto silicon substrate has been investigated with the objective of preparing a high capacitance and high power micro-supercapacitor (µ-SC) device. Ti current collectors were synthesised by typical photolithography processes, and hRuO2 thin films were electrodeposited from ruthenium chloride precursors. Device specific capacitances exceeding 20 mF·cm−2 were obtained, and more than 80 % of that value is retained even at scan rate as high as 1 V∙s−1 in 0.5 M H2SO4. The mean specific power per active surface area of the device is 368 mW·cm−2. The device is stable and 90% of the initial capacity is retained after 105 cycles (1 V potential window). The characteristic response time of the hRuO2 µ-SC is 250 ms, with low ESR (0.61 Ω cm−2) and EDR (0.07 Ω cm−2) values. All these characteristics demonstrate the potential of such µ-SC devices to be part of the next generation of micro-supercapacitors.