Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T01:11:35.559Z Has data issue: false hasContentIssue false

Scaffolds of Collagen from Nukbone ®

Published online by Cambridge University Press:  28 November 2012

Benjamín H. León
Affiliation:
Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, C.P. 04510, México D.F.
Miguel A. Araiza
Affiliation:
Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Cuidad Universitaria, Coyoacán, C.P. 04510, México D.F.
M. Cristina Piña
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n, Coyoacán, C.P. 04510, México D.F.
Get access

Abstract

The scaffold is obtained from acellular bovine bone: Nukbone® (produced by Biocriss SAPI de CV). This acellular bone was subjected to a demineralization process after which the composition was found to be 10% water, 65% of collagen and 25% of hydroxyapatite. The techniques used to characterize these natural scaffolds were: optical microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, thermo gravimetric analysis, differential scanning calorimetry and determination of pore size using nitrogen adsorption, and physical adsorption of N2. The pore size is between 100 and 500 microns. These scaffolds have been tested in several biological tissues as urethra, trachea, blood vessels, bone and heart successfully.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Piña, BMC, Munguía, AN, Palma, CR, Lima, E. Caracterización de hueso anorgánico: Nukbone. Acta Orthop (2006): 20; 150155.Google Scholar
Urist, MR, Strates, BS. Bone morphogenetic protein. J Dent Res. (1971): 50; 13921406.CrossRefGoogle ScholarPubMed
Urist, MR. The substratum for bone morphogenesis. Develop Biol (suppl) (1970): 29; 125163.Google ScholarPubMed
Reddi, AH, Huggins, CB. Influence of geometry of transplanted tooth and bone on transformation of fibroblast. Exp Biol Med. (1973): 143; 634637.CrossRefGoogle Scholar
Urist, MR. Bone: formation by autoinduction. Science (1965): 150; 893899.CrossRefGoogle ScholarPubMed
Carpener, J, Pikal, M, Chang, BH, Randolph, T. Rational desing of stable lyophilized protein formulations: some practical advice. Pharmacol Res. (1997): 14; 969975.CrossRefGoogle Scholar
Glowacki, J. A review of osteoinducive testing methods and sterilization processes for demineralied bone. J. Cell Tissue Bank. (2005): 6; 312.CrossRefGoogle Scholar
Chen, PY, Torian, D, Price, PA, Mckitrick, J. Mineral form a continuum in mature cancellous bone. Calcif Tissue Int. (2011): 88; 351361.CrossRefGoogle Scholar
Geneser, F. Histología. 3a. Buenos Aires, Argentina: Médica Panamericana, 2000.Google Scholar
Montuenga, BL, Esteban, RF, Calvo, GA. Técnica en histología y biología celular. Barcelona, España: Elsevier Masson, 2009.Google Scholar
Bosch, P, Alemán, I, Moreno, C, Botella, M. Boiled versus unboiled: a study on Neolitic and contemporary human bones. J Archael Sc. (2011): 38; 25612570.CrossRefGoogle Scholar
Skoog, DA, Holler, FJ, Crouh, SR. Análisis Instrumental. 6a. México: CENGAGE Learning, 2008.Google Scholar
Lozano, LF, Peña, RM, Heredia, A. Thermal analysis study of human bone. J. Mat. Sc. (2003): 38; 47774782.CrossRefGoogle Scholar
Trebacz, H, Wójtowicz, K. Thermal stabilization of collagen molecules in bone tissue. Int J. Biological Macomolecules. (2005): 37; 257262.CrossRefGoogle ScholarPubMed
Martínez dlC, Pfeiffer H. Microstructual thermal evolution of the Na2Co3 phase produced during a Na2ZrO3-CO2 chemiosorption process. J Physical Chemistry. (2012): 116; 96759680.Google Scholar
IUPAC. Pure Appl Chem. (1994): 66; 1739.Google Scholar