Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T05:11:25.580Z Has data issue: false hasContentIssue false

A Scanning Tunneling Microscopy Study of the Reduced Tio2(110)Surface

Published online by Cambridge University Press:  26 February 2011

Gregory S. Rohrer
Affiliation:
Department of Metallurgical Engineering and Materials Science, Carnegie Mellon University, Pittsburgh, PA, 15213
Victor E. Henrich
Affiliation:
Surface Science Laboratory, Department of Applied Physics, Yale University, New Haven, CT, 06520
Dawn A. Bonnell
Affiliation:
Dept. of Materials Science and Engineering, University of Pennsylvania,Philadelphia, PA, 19104
Get access

Abstract

The scanning tunneling microscope has been used to image a reduced TiO2(110) surface in ultrahigh vacuum. Structural units with periodicities ranging from 21Å to 3.4Å have been clearly imaged and the observed surface structures can be explained by a model involving ordered arrangements of two dimensional defects known as crystallographic shear planes. An electronic state 0.5 eV below the conduction band edge, detected in tunneling spectra, has been assigned to reduced Ti cations which reside along the crystallographic shear planes. This state appears to be empty at the surface, possibly due to asmall amount of band bending. The results indicate that the topography of nonstoichiometric oxide surfaces can be rather complex and that the tunneling microscope provides an effective tool for studying the tomic scale surface features of wide band gap semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Henrich, V., Rep. Prog. Phys. 48, 1481 (1985).Google Scholar
2. Göpel, W., Prog. Surf. Sci. 20, 9 (1984).Google Scholar
3. Smith, D. J. in Chemistry and physics of solid surfaces, VI, edited by Vanselow, R. and Howe, R. (Springer-Verlag, Berlin, 1986) p. 413;Google Scholar
3a. Smith, D. J., Glaisher, R. W.,Lu, P., McCartney, M. R., Ultramicroscopy 29, 123 (1989).Google Scholar
4. Kirk, M. D., Nogami, J., Baski, A. A., Mitzi, D. B., Kapitulnit, A., Geballe, T. H., and Quate, C. F., Science 242, 1674 (1988).Google Scholar
5. Kirk, M. D., Eom, C. B., Oh, B., Spielman, S. R., Beasley, M. R. Kapitulnit, A., Geballe, T. H., and Quate, C. F., Appl. Phys. Lett. 52, 2071 (1988).Google Scholar
6. Garfunkel, E., Rudd, G., Novak, D., Wang, S., Ebert, G., Greenblatt, M., Gustavsson, T.,Garofalini, S.H., Science 246, 99 (1989).Google Scholar
7. Wu, X. L., Zhang, Z., Wang, Y. L., Lieber, C. M., Science 248, 1211 (1990).Google Scholar
8. Norton, M. L., Mantovani, J. G., and Warmack, R. J., J. Vac. Sci. Technol. A 7, 2898(1989).Google Scholar
9. Gilbert, S. E. and Kennedy, J. E., J. Electrochem. Soc. 135, 2385 (1988).CrossRefGoogle Scholar
10. Itaya, K. and Tomita, E., Chem. Lett. 1985, 285.Google Scholar
11. Sakamaki, K., Matsunaga, S., Itoh, K., Fujishima, A., and Gohshi, Y., Surface Science 219, L531 (1989).Google Scholar
12. Gilbert, S. E. and Kennedy, J. H., Langmuir 5, 1412 (1989).Google Scholar
13. Gilbert, S. E. and Kennedy, J. H., Surface Science 225, L1 (1990).Google Scholar
14. Rohrer, G. S., Henrich, V. E., Bonnell, D. A., Science 250, 1239 (1990).Google Scholar
15. No ultraviolet photoelectron spectroscopy (UPS) data were taken on this surface,although the LEED patterns were similar to those on the TiO2(110)surfaces that exhibit no band gap defect surface states;Google Scholar
15a. Sadeghi, H. R. and Henrich, V. E.,Appl. Surf. Sci. 19, 330 (1984).Google Scholar
16. The STM head was manufactured by WA technologies, Cambridge, England.Google Scholar
17. For details on the determination of the apparent barrier height, see Rohrer, G. and Bonnell, D., J. Am. Ceram. Soc. 73, 3026 (1990).Google Scholar
18. Feenstra, R. M., Stroscio, J. A., Fein, A. P., Surf. Sci. 181, 295 (1987).Google Scholar
19. Bursill, L. A. and Hyde, B. G. in Prog. in Solid State Chemistry Vol 7, edited by Reiss and McCaldin (Pergamon Press, New Jersey, 1972), p. 177.Google Scholar
20. Goodenough, J. B. in Progress in Solid State Chemistry Vol. 5, edited by Reiss, H. (Pergamon Press, New Jersey, 1971),p. 145.Google Scholar
21. Pauling, L., The Nature of the Chemical Bond (Cornell University Press, Ithica,1960) p. 98.Google Scholar
22. Munnix, S. and Schmeits, M., Phys. Rev. B 30, 2202 (1984).Google Scholar
23. Rohrer, G. S. and Bonnell, D. B., presented at the 1990 STM/NANO meeting,Baltimore, Md, 1990;Google Scholar
23a.in press, J. Vac. Sci. Technol.Google Scholar