Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-21T12:59:16.861Z Has data issue: false hasContentIssue false

Schottky Barriers on a-Si:H,F/a-Si,Ge:H,F Superlattices

Published online by Cambridge University Press:  26 February 2011

V. Chu
Affiliation:
Department of Electrical Engineering Princeton University, Princeton, New Jersey 08544
J. P. Conde
Affiliation:
Department of Electrical Engineering Princeton University, Princeton, New Jersey 08544
S. Aljishi
Affiliation:
Department of Electrical Engineering Princeton University, Princeton, New Jersey 08544
D. S. Shen
Affiliation:
Department of Electrical Engineering Princeton University, Princeton, New Jersey 08544
Z E. Smith
Affiliation:
Department of Electrical Engineering Princeton University, Princeton, New Jersey 08544
S. Wagner
Affiliation:
Department of Electrical Engineering Princeton University, Princeton, New Jersey 08544
Get access

Abstract

We report measurements of Schottky barrier heights and minority carrier mobilitylifetime products of multilayer structures composed of a-Si:H,F and a-Si,Ge:H,F. These layers are grown by r.f. glow discharge decompostion of SiF4, GeF4, and H2 in the a-Si,Ge:H,F (well) layer and of SiF4 and H2 in the a-Si:H,F (barrier) layer.

Schottky barrier height ΦB of Pt is measured using internal photoemission measurements. The minority carrier mobility-lifetime product (μτ)p is extracted from a fit of the voltage dependence of internal quantum efficiency to the Hecht expression. Both ΦB and (μτ)p are measured as a function of barrier and well thicknesses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Conde, J.P., Aljishi, S., Shen, D.S., Chu, V., Smith, Z E. and Wagner, S., in this volumeGoogle Scholar
2. Oda, S., Shirai, H., Tanabe, A., Hanna, J., and Shimizu, I., to be publishedGoogle Scholar
3. Wronski, C.R., Tiedje, T., Persans, P., Abeles, B. and Hicks, M., Appl. Phys. Lett. 49, 1378 (1986)Google Scholar
4. Vanacek, M., Kocka, J., Kozisek, Z., 0. Stika, and Triska, A., Sol. Energy Mater., 8, 411 (1983)Google Scholar
5. Fowler, R.H., Phys. Rev., 38, 45 (1931)Google Scholar
6. Wronski, C.R., Abeles, B., Cody, G.D., and Tiedje, T., Appl. Phys. Lett., 31(1), 96 (1980)Google Scholar
7. Chu, V., Aljishi, S., Slobodin, D. and Wagner, S., Mat. Res. Soc. Symp. Proc., 70, 295 (1986)Google Scholar
8. Karg, F., Kruhler, W., Moller, M., v.Klitzing, K., J. Appl. Phys. 60, 2016 (1986)Google Scholar
9. Shen, D.S., Aljishi, S., Smith, Z E., Conde, J.P., Chu, V. and Wagner, S., in this volumeGoogle Scholar
10. V.N.Kalema Aljishi, S., Dawson, R.M.A., Slobodin, D. and Wagner, S., Mat. Lett. 4, 320 (1986)Google Scholar
11. Wronski, C.R., Persans, P.D. and Abeles, B., Appl. Phys. Lett., 49 569 (1986)Google Scholar
12. Conde, J.P., Shen, D.S., Campbell, I.H., Fauchet, P.M. and Wagner, S., Mat. Res. Soc. Symp. Proc. (Fall, 1986)Google Scholar