Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T20:18:38.737Z Has data issue: false hasContentIssue false

Scintillating Metal Organic Frameworks: A New Class of Radiation Detection Materials

Published online by Cambridge University Press:  31 January 2011

Mark Allendorf
Affiliation:
mdallen@sandia.gov, Sandia National Laboratories, Mail Stop 9291, Livermore, California, 94551-0969, United States
Ronald Houk
Affiliation:
rhouk@sandia.gov, Sandia National Laboratories, Livermore, California, United States
Raghu Bhakta
Affiliation:
rkbhakt@sandia.gov, Sandia National Laboratories, Livermore, California, United States
Ida Beck Nielsen
Affiliation:
ibniels@sandia.gov, Sandia National Laboratories, Livermore, California, United States
Patrick Doty
Affiliation:
fpdoty@sandia.gov, Sandia National Laboratories, Livermore, California, United States
Get access

Abstract

The detection and identification of subatomic particles is an important scientific problem with implications for medical devices, radiography, biochemical analysis, particle physics, and astrophysics. In addition, the development of efficient detectors of neutrons generated by fissile material is a pressing need for nuclear nonproliferation and counterterrorism efforts. A critical objective in the field of radiation detection is to develop the physical insight necessary to rationally design new scintillation materials for specific applications. However, none of the material types currently used in has sufficient synthetic versatility to exert systematic control over the factors controlling the light output and its dynamics. Here we describe a spectroscopic investigation of two stilbene-based metal-organic frameworks (MOFs) we synthesized, demonstrating that they emit light in response to ionizing radiation, creating the first completely new class of scintillation materials since the advent of plastic scintillators in 1950. This highly novel and unexpected property of MOFs opens a new route to rational design of radiation detection materials, since the spectroscopy shows that both the luminescence spectrum and its timing can be varied by altering the local environment of the chromophore within the MOF. Therefore, the inherent synthetic flexibility of MOFs, which enables both the chromophore structure and its local environment to be systematically varied, suggests that this class of materials can serve as a controlled “nanolaboratory” for probing a broad range of photophysical and radiation detection phenomena. In this presentation we report on the time-dependent fluorescence and radioluminescence of these MOFs and related structures. Multiple decay characteristics have been observed for some materials under study, including fast (ns) exponential and slow (microsecond) non-exponential components. We interpret the results in terms of the electronic states, crystal structures, intermolecular interactions, and transport effects mediating the luminescence. The potential for particle discrimination schemes and large scale production of MOFs and will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klein, H.; Brooks, F. D. “Proc. Int. Workshop Fast Neutron Detectors Appl.”, 2006, POS(FNDA2006). Available at http://pos.sissa.it it.Google Scholar
2. Moszynski, M.; Costa, G. J.; Guillaume, G.; Heusch, B.; Huck, A.; Mouatassim, S. Nucl. Inst. Meth. Phys. Res. A 350, 226 (1994).Google Scholar
3. Knoll, G. F. Radiation Detection and Measurement, 3rd ed.; Wiley: New York, 2000.Google Scholar
4. Doty, F. P.; Bauer, C. A.; Skulan, A. J.; Grant, P. G.; Allendof, M. D. Adv. Mater. 21, 95 (2009).Google Scholar
5. Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry, 1st revised ed. ed.; McGraw-Hill: New York, 1989.Google Scholar
6. Foresman, J. B.; Head-Gordon, M.; Pople, J. A.; Frisch, M. J. J. Phys. Chem. 96, 135 (1992).Google Scholar
7. Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 28, 1973 (1973).Google Scholar
8. Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 54, 724 (1971).Google Scholar
9. Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 256, 454 (1996).Google Scholar
10. Becke, A. D. J. Chem. Phys. 98, 5648 (1993).Google Scholar
11. Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 37, 785 (1998).Google Scholar
12. Zerner, M. C. Rev. Comp. Chem.; VCH: New York, 1991; Vol. 2.Google Scholar
13.M. J. Frisch, , G. W. T., Schlegel, H. B., Scuseria, G. E.,; Robb, M. A., J. R. C., , Montgomery, J. A. Jr., Vreven, T.,; Kudin, K. N., J. C. B., , Millam, J. M. Iyengar, S. S. Tomasi, J. et al. Gaussian 03, Rev. C.02; Gaussian, Inc.: Wallingford, CT, 2004.Google Scholar
14. Yaghi, O. M.; Li, G. M.; Li, H. L. Nature 378, 703 (1995).Google Scholar
15. Yaghi, O. M.; Li, H. L. J. Am. Chem. Soc. 117, 10401 (1995).Google Scholar
16. Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O'Keefe, M.; Yaghi, O. M. Acc. Chem. Res. 34, 319 (2001).Google Scholar
17. Ferey, G. Chem. Mater. 13, 3084 (2001).Google Scholar
18. James, S. L. Chem. Soc. Rev. 32, 276 (2003).Google Scholar
19. Ferey, G.; Mellot-Drazniek, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. Science 309, 2040 (2005).Google Scholar
20. Rowsell, J. L. C.; Yaghi, O. M. Angew. Chem. Int. Ed. 44, 4670 (2005).Google Scholar
21. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keefe, M.; Yaghi, O. M. Science 295, 469 (2002).Google Scholar
22. Costa, J. S.; Gamez, P.; Black, C. A.; Roubeau, O.; Teat, S. J.; Reedijk, J. European Journal of Inorganic Chemistry, 1551 (2008).Google Scholar
23. Furukawa, S.; Hirai, K.; Nakagawa, K. et al. Angewandte Chemie-International Edition 48, 1766 (2009).Google Scholar
24. Song, Y. F.; Cronin, L. Angewandte Chemie-International Edition 47, 4635 (2008).Google Scholar
25. Tanabe, K. K.; Wang, Z. Q.; Cohen, S. M. Journal of the American Chemical Society 130, 8508 (2008).Google Scholar
26. Wang, Z. Q.; Cohen, S. M. Journal of the American Chemical Society 129, 12368 (2007).Google Scholar
27. Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. Nature 427, 523 (2004).Google Scholar
28. Bauer, C. A.; Timofeeva, T. V.; Settersten, T. B.; Patterson, B. D.; Liu, V. H.; Simmons, B. A.; Allendorf, M. D. J. Am. Chem. Soc. 129, 7136 (2007).Google Scholar
29. Cussen, E. J.; Claridge, J. B.; Rosseinsky, M. J.; Kepert, C. J. J. Am. Chem. Soc. 124, 9574 (2002).Google Scholar
30. Yaghi, O. M.; Davis, C. E.; Li, G.; Li, H. J. Am. Chem. Soc. 119, 2861 (1997).Google Scholar
31. Bahr, D. F.; Reid, J. A.; Mook, W. M. et al. Phys. Rev. B 76 (2007).Google Scholar
32. Greathouse, J. A.; Allendorf, M. D. J. Am. Chem. Soc. 128, 10678 (2006).Google Scholar
33. Greathouse, J. A.; Allendorf, M. D., Force Field Validation for Molecular Dynamics Simulations of IRMOF-1 and Other Isoreticular Zinc Carboxylate Coordination Polymers,” J. Phys. Chem. C, accepted for publication, 2008.Google Scholar
34. Allendorf, M. D.; Houk, R. J. T.; Andruszkiewicz, L.; Talin, A. A.; Pikarsky, J.; Choudhury, A.; Gall, K. A.; Hesketh, P. J. J. Amer. Chem. Soc. 130, 14404 (2008).Google Scholar
35. Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Chem. Soc. Rev. DOI: 10.1039/b802352m (2009).Google Scholar
36. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 402, 276 (1999).Google Scholar
37. Doty, F. P.; Allendorf, M. D., patent pending.Google Scholar
38. Doty, P.; Bauer, C.; Grant, P.; Skulan, A. J.; Allendorf, M. D., unpublished data.Google Scholar
39. Gibbons, P. E.; Northrop, D. C.; Simpson, O. Proc. Phys. Soc. 79, 373 (1962).Google Scholar
40. Dierksen, M.; Grimme, S. J. Chem. Phys. 120, 3544 (2004).Google Scholar
41. Hirata, S.; Lee, T. J.; Head-Gordon, M. J. Chem. Phys. 111, 8904 (1999).Google Scholar
42. Jas, G. S.; Kuczera, K. Chem. Phys. Lett. 214, 229 (1997).Google Scholar