Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T22:49:59.567Z Has data issue: false hasContentIssue false

Second-Order Nonlinear Optical Polymers With Different Chromophore Arrangements

Published online by Cambridge University Press:  16 February 2011

Bo Wu
Affiliation:
Loker Hydrocarbon Research InstituteUniversity of Southern California, Los Angeles, CA 90089
Chengzeng Xu
Affiliation:
Loker Hydrocarbon Research InstituteUniversity of Southern California, Los Angeles, CA 90089
Larry R. Dalton
Affiliation:
Department of Electrical Engineering, University of Southern California, Los Angeles, CA90089
Srinath Kalluri
Affiliation:
Loker Hydrocarbon Research InstituteUniversity of Southern California, Los Angeles, CA 90089
Yongqiang Shi
Affiliation:
Loker Hydrocarbon Research InstituteUniversity of Southern California, Los Angeles, CA 90089
William H. Steier
Affiliation:
Loker Hydrocarbon Research InstituteUniversity of Southern California, Los Angeles, CA 90089
Get access

Abstract

Second-order nonlinear optical polymers can be divided into four groups regarding arrangements of chromophore dipoles in polymer backbones, namely, side-chain polymers, random, head-to-tail, and head-to-head Main-chain polymers. A variety of polymers with the aforementioned configurations have been designed and synthesized from functionalized amino-nitro azobenzene chromophores. Poling processes of these polymeric materials have been investigated by in-situ poling and second-harmonic generation detection.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Prasad, P. N., Williams, D. J., Introdduction to Nonlinear Optical Effects in molecules and Polymers, (John Wiley and Sons, New York, 1991).Google Scholar
2. Kohler, W., Robello, D. R., Dao, P. T., Willand, C. S., Williams, D. J., J. Chem. Phys. 92 (12), 9157 (1990).CrossRefGoogle Scholar
3. Kohler, W., Robello, D. R., Willand, C. S., Williams, D. J., Macromol. 24 (16), 4589 (1991).CrossRefGoogle Scholar
4. Mitchell, M. A., Hall, H. K. Jr, Mulvaney, J. E., Willand, C., Williams, D. J., Hampsch, H., Polym. Prepr. 33 (1), 1060 (1992).Google Scholar
5. Lindsay, G. A., Stenger-Smith, J. D., Henry, R. A., Hoover, J. M., Nissan, R. A., Wynne, K. J., Macromol. 25, 6075 (1992).CrossRefGoogle Scholar
6. Xu, C., Wu, B., Becker, M. W., Dalton, L. R., Ranon, P. M., Shi, Y., Steier, W. H., Chem. Mater. 5, 1439 (1993).Google Scholar
7. Wright, M. E., Mullick, S., Macromol. 25, 6045 (1992).Google Scholar
8. Xu, C., Wu, B., Dalton, L. R., Shi, Y., Ranon, P. M., Steier, W. H., Macromol. 25, 6716 (1992).Google Scholar
Xu, C., Wu, B., Dalton, L. R., Shi, Y., Ranon, P. M., Steier, W. H., Macromol. 26, 5303 (1993).Google Scholar
9. Eur. Pat. Appl. EP 297, 607 (1989).Google Scholar
10. Chen, M., Yu, L., Dalton, L. R., Shi, Y., Steier, W. H., Macromol. 24, 5421 (1991).Google Scholar
11. Shi, Y., Ranon, P. M., Steier, W. H., Xu, C., Wu, B., Dalton, L. R., in Preceding of SPIE Meeting, San Diego, CA, 1993.Google Scholar
12. Singer, K. D., King, L. A., J. Appl. Phys. 70 (6), 3251 (1991).CrossRefGoogle Scholar
13. Page, R. H., Jurich, M. C., Reck, B., Ren, A., Tweig, R. J., Swalen, J. D., Bjorklund, G. C., Wilson, C. G., Opt, J.. Soc. AM., B7, 1239 (1990).Google Scholar