Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T08:45:42.738Z Has data issue: false hasContentIssue false

Seed-Free Growth of Diamond Patterns on Femtosecond Laser Processed Silicon Substrates

Published online by Cambridge University Press:  18 March 2013

Mengmeng Wang
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, U.S.A. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Yunshen Zhou
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, U.S.A.
Z. Q. Xie
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, U.S.A.
Y. Gao
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, U.S.A.
Lan Jiang
Affiliation:
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Yongfeng Lu
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, U.S.A.
Get access

Abstract

Due to its outstanding properties, diamond is considered as an ideal material for mechanical and electric applications at high temperatures, voltages, radiation, etc. It is known that femtosecond lasers exhibit extremely high precision and minimized thermal effect in material processing. In this study, a seed-free diamond pattern growth method was developed by patterning silicon substrates using a femtosecond laser before diamond deposition through laser-assisted combustion flame synthesis. The resolution of the diamond patterns reaches micro scales. Peak position, full width at half maximum (FWHM), and diamond quality parameter were calculated from Raman spectra. The mechanism of the seed-free diamond growth based on the femtosecond laser patterning was discussed. The influence of substrates surface roughness on the diamond nucleation and subsequent growth was studied, indicating that the nucleation density is proportional to the surface roughness.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lee, S.-T., Lin, Z., and Jiang, X., Mater. Sci. Eng. R 25, 123154 (1999).10.1016/S0927-796X(99)00003-0CrossRefGoogle Scholar
Sepulveda, N., Aslam, D., and Sullivan, J. P., Diamond Relat. Mater. 15, 398403 (2006).10.1016/j.diamond.2005.08.032CrossRefGoogle Scholar
Kohn, E., Gluche, P., and Adamschik, M., Diamond Relat. Mater. 8, 934940 (1999).10.1016/S0925-9635(98)00294-5CrossRefGoogle Scholar
Enlund, J., Isberg, J., Karlsson, M., Nikolajeff, F., Olsson, J., and Twitchen, D. J., Carbon 43, 18391842 (2005).10.1016/j.carbon.2005.02.022CrossRefGoogle Scholar
Sakai, T., Ono, T., Sakuma, N., Suzuki, M., and Yoshida, H., New Diam. Front C. Tec. 17, 189199 (2007).Google Scholar
Zou, Y. S., Yang, Y., Chong, Y. M., Ye, Q., He, B., Yao, Z. Q., Zhang, W. J., Lee, S. T., Cai, Y., and Chu, H. S., Cryst. Growth Des. 8, 17701773 (2008).10.1021/cg070267aCrossRefGoogle Scholar
Guillaudeu, S., Zhu, X., and Aslam, D. M., Diamond Relat. Mater. 12, 6569 (2003).10.1016/S0925-9635(02)00286-8CrossRefGoogle Scholar
Fox, N. A., Youh, M. J., Steeds, J. W., and Wang, W. N., J. Appl. Phys. 87, 8187 (2000).10.1063/1.373516CrossRefGoogle Scholar
Zhuang, H., Song, B., Staedler, T., and Jiang, X., Langmuir 27, 1198111989 (2011).10.1021/la2024428CrossRefGoogle Scholar
Chichkov, B. N., Momma, C., Nolte, S., von Alvensleben, F., and Tünnermann, A., Appl. Phys. A-Mater 63, 109115 (1996).10.1007/BF01567637CrossRefGoogle Scholar
Zoubir, A., Shan, L., Richardson, K., and Richardson, M., Appl. Phys. A-Mater. 77, 311315 (2003).Google Scholar
Bonse, J., Baudach, S., Krüger, J., Kautek, W., and Lenzner, M., Appl. Phys. A-Mater. 74, 1925 (2002).10.1007/s003390100893CrossRefGoogle Scholar
Xie, Z., Zhou, Y., He, X., Gao, Y., Park, J., Ling, H., Jiang, L., and Lu, Y., Cryst. Growth Des. 10, 17621766 (2010).10.1021/cg9014515CrossRefGoogle Scholar
Xie, Z. Q., He, X. N., Hu, W., Guillemet, T., Park, J. B., Zhou, Y. S., Bai, J., Gao, Y., Zeng, X. C., Jiang, L., and Lu, Y. F., Cryst. Growth Des. 10, 49284933 (2010).10.1021/cg1010083CrossRefGoogle Scholar
Guillemet, T., Xie, Z. Q., Zhou, Y. S., Park, J. B., Veillere, A., Xiong, W., Heintz, J. M., Silvain, J. F., Chandra, N., and Lu, Y. F., ACS Appl. Mater. Interfaces 3, 41204125 (2011).10.1021/am201010hCrossRefGoogle Scholar
Sails, S. R., Gardiner, D. J., Bowden, M., Savage, J., and Rodway, D., Diamond Relat. Mater. 5, 589591 (1996).10.1016/0925-9635(96)90031-XCrossRefGoogle Scholar
Yugo, S., Izumi, A., Kanai, T., Muto, T. and Kimura, T., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R.. (Mater. Res. Soc. Proc. 2nd Int. Conf. Pittsburgh, PA, 1991) pp. 385389.Google Scholar
Dennig, P. A., Shiomi, H., Stevenson, D. A., and Johnson, N. M., Thin Solid Films 212, 6367 (1992).10.1016/0040-6090(92)90501-2CrossRefGoogle Scholar
Angus, J. C., Wang, Y., and Sunkara, M., Ann. Rev. Mater. Sci. 22, 221248 (1991).10.1146/annurev.ms.21.080191.001253CrossRefGoogle Scholar
Louchev, O. A., Dussarrat, C., and Sato, Y., J. Appl. Phys. 86, 1736 (1999).10.1063/1.370955CrossRefGoogle Scholar
Liu, H. and Dandy, D. S., Diamond Relat. Mater. 4, 11731188 (1995).10.1016/0925-9635(96)00297-2CrossRefGoogle Scholar
Dennig, P. A. and Stevenson, D. A., Appl. Phys. Lett. 59, 1562 (1991).10.1063/1.106283CrossRefGoogle Scholar
Wang, X. H., Zhu, W., von Windheim, J., and Glass, J. T., J. Cryst. Growth 129, 4555 (1993).10.1016/0022-0248(93)90432-VCrossRefGoogle Scholar