Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T14:14:18.278Z Has data issue: false hasContentIssue false

Selective Growth, Diffusion Layers and the Schottky Barrier Height in Nickel Silicide-Silicon Interfaces

Published online by Cambridge University Press:  22 February 2011

J. L. Erskine
Affiliation:
Department of PhysicsUniversity of TexasAustin, Texas 78712
Yu-Jeng Chang
Affiliation:
Department of PhysicsUniversity of TexasAustin, Texas 78712
Get access

Abstract

Selected interface phenomena associated with metal semiconductor contacts are discussed in relation to recent experimental and theoretical work on the electronic properties, interface formation and structure, and device characteristics of nickel-silicon interfaces. Evidence is presented which suggests that a well-defined interfacial phase is present at all nickel silicide-silicon boundaries formed by deposition of nickel atoms onto silicon surfaces. The existence of this phase is shown to account for several important interface properties of the nickel silicide system including selective growth, the rotational twin structure of epitaxial films and the observed invariance of the nickel silicide-silicon Schottky barrier height as the silicide contact stoichiometry is varied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Szmulowicz, F., Phys. Rev. B23, 1652 (1981).CrossRefGoogle Scholar
2. Wang, C. S. and Klein, B. M., Phys. Rev. B24, 3417 (1981).CrossRefGoogle Scholar
3. Heaton, R. and Lafon, E., J. Phys. C: Solid State Phys. 14, 347 (1981).CrossRefGoogle Scholar
4. Car, R., Tosatti, E., Baroni, S. and Leelaprnte, S., Phys. Rev. B24, 985 (1981).CrossRefGoogle Scholar
5. Franciosi, A., Weaver, J. H. and Schmidt, F. A., Phys. Rev. B26, 546 (1982).CrossRefGoogle Scholar
6. Chang, Y. J. and Erskine, J. L., Phys. Rev. B26, 7031 (1982).CrossRefGoogle Scholar
7. Chabal, Y. J., Hamman, D. R., Rowe, J. E. and Schluter, M., Phys. Rev. B25, 7598 (1982).CrossRefGoogle Scholar
8. Bisi, O. and Calandara, C., J. Phys. C: Solid State Phys. 14, 5479 (1981).CrossRefGoogle Scholar
9. Bylander, D. M., Kleinman, L., Mednick, K. and Grise, W. R., Phys. Rev. B26, 6379 (1982).CrossRefGoogle Scholar
10. Bylander, D. M., Kleinman, L. and Nednick, K., Phys. Rev. B25, 1090 (1982).CrossRefGoogle Scholar
11. Chang, Y. J., Ph.D. Thesis, University of Texas (1983).Google Scholar
12. Ottaviani, G., J. Vac. Sci. Technol. 16, 1112 (1979).CrossRefGoogle Scholar
13. Walser, R. M. and Bené, R. W., Appl. Phys. Lett. 28, 624 (1976).CrossRefGoogle Scholar
14. Tu, K. N., Appl. Phys. Lett. 27, 221 (1975).CrossRefGoogle Scholar
15. Chiu, W. K., Krantle, K., Mayer, J. W., Muller, H., Nicolet, N. A. and Tu, K. N., Appl. Phys. Lett. 25, 454 (1974).CrossRefGoogle Scholar
16. Cheung, N. W. and Mayer, J. W., Phys. Rev. Lett. 46, 671 (1981).CrossRefGoogle Scholar
17. Chang, Y. J. and Erskine, J. L., Phys. Rev. B26, 4766 (1982).CrossRefGoogle Scholar
18. Chang, Y. J. and Erskine, J. L., J. Vac. Sci. Technol. A1, 1193 (1983).CrossRefGoogle Scholar
19. Chang, Y. J. and Erskine, J. L., Phys. Rev. B28, 5766 (1983); also see ref. 11.CrossRefGoogle Scholar
20. Ishiwara, H., Hikosaka, K., Nagatono, M. and Furukawa, S., Surf. Sci. 86, 711 (1979).CrossRefGoogle Scholar
21. Chiu, K. C. R., Poate, J. M., Feldman, L. C. and Doherty, J. C., Appl. Phys. Lett. 36, 544 (1980).CrossRefGoogle Scholar
22. Chiu, K. C. R., Poate, J. M., Rowe, J. E., Sheng, T. T. and Cullis, A. G., Appl. Phys. Lett. 138, 988 (1981).CrossRefGoogle Scholar
23. Tung, R. T., Poate, J. M., Bean, J. C., Gibson, J. M. and Jacobson, D. C., Solid Thin Films 93, 77 (1982).CrossRefGoogle Scholar
24. Tung, R. T., Gibson, J. M. and Poate, J. M., Phys. Rev. Lett. 50, 429 (1983).CrossRefGoogle Scholar
25. Schluter, M., Thin Solid Films 93, 3 (1982).CrossRefGoogle Scholar
26. Rhoderick, E. H. IEEE Proc. 129, 1 (1982).Google Scholar
27. Clabes, J. G., Rubloff, G. W., Reihl, B., Purtell, R. J., Ho, P. S., Zartner, A, Himpsel, F. J. and Eastman, D. E., J. Vac. Sci. Technol. 20, 684 (1982).CrossRefGoogle Scholar
28. Ho, P. S., J. Vac. Sci. Technol. A1, 745 (1982).Google Scholar
29. Freeouf, J. L., Solid State Commun. 33, 1059 (1980).CrossRefGoogle Scholar
30. Bardeen, J., Phys. Rev. 71, 717 (1947).CrossRefGoogle Scholar
31. Heine, V., Phys. Rev. 138A, 1689 (1965).CrossRefGoogle Scholar
32. Inkson, J. C., J. Vac. Sci. Technol. 11, 943 (1974).CrossRefGoogle Scholar
33. Crowell, C. R., J. Vac. Sci. Technol. 11, 951 (1974).CrossRefGoogle Scholar
34. Andrews, J. M. and Phillips, J. C., Phys. Rev. Lett. 35, 56 (1975);CrossRefGoogle Scholar
Phillips, J. C., J. Vac. Sci. Technol. 11, 947 (1974).CrossRefGoogle Scholar
35. Ottaviani, G., Tu, K. N. and Mayer, J. W., Phys. Rev. Lett. 44, 284 (1980).CrossRefGoogle Scholar
36. Schmid, P. E., Ho, P. S. and Tan, T. Y., J. Vac. Sci. Technol. 20, 688 (1982).CrossRefGoogle Scholar
37. Tung, R. T., Gibson, J. M. and Poate, J. M., Phys. Rev. Lett. 50, 429 (1983).CrossRefGoogle Scholar