Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T01:20:07.676Z Has data issue: false hasContentIssue false

Selective Intermixing of Ion Irradiated Semiconductor Heterostructures

Published online by Cambridge University Press:  15 February 2011

R. D. Goldberg
Affiliation:
Department of Physics and Astronomy, The University of Western Ontario, Ontario, N6A 3K7, Canada
I. V Mitchell
Affiliation:
Department of Physics and Astronomy, The University of Western Ontario, Ontario, N6A 3K7, Canada
P. G. Piva
Affiliation:
Department of Physics and Astronomy, The University of Western Ontario, Ontario, N6A 3K7, Canada
H. H. Tan
Affiliation:
Department of Electronic Materials Engineering, RSPSE, Australian National University, ACT, 0200, Australia
C. Jagadish
Affiliation:
Department of Electronic Materials Engineering, RSPSE, Australian National University, ACT, 0200, Australia
P. J. Poole
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, K IA 0R6, Canada
G. C. Aers
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, K IA 0R6, Canada
S. Charbonneau
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, K IA 0R6, Canada
G. C. Weatherly
Affiliation:
Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, L8S 4Ll, Canada
M. B. Johnson
Affiliation:
Department of Electronic Materials Engineering, RSPSE, Australian National University, ACT, 0200, Australia
M. Gal
Affiliation:
Department of Electronic Materials Engineering, RSPSE, Australian National University, ACT, 0200, Australia
A. J. Springthorpe
Affiliation:
School of Physics, The University of New South Wales, Sydney, N.S.W., 2052, Australia
H. Chen
Affiliation:
Nortel Technology, P.O. Box 3511 Station C., Ottawa, Ontario, KIY 4H7, Canada
R. M. Feenstra
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Get access

Abstract

Significant progress has been realized in the use of quantum well intermixing (QWI) as a method for tailoring the bandgap energies of optoelectronic devices. Intermixing can be driven by an ion implantation process, an approach that appeals because of its simplicity, its planarity and its adaptability to selective area processing. Despite its success, the advantages of irradiation induced QWI need to be tested further and we report here current results of three research activities which address a) the existence or not of a simple scaling relationship which connects intermixing in a given QW structure for any ion species; b) reproducibility of intermixing in identical QW structures which have been obtained from different growth systems; and c) intermixing for above the well versus through the well implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rao, E. V. K., Juhel, M., Krauz, Ph., Gao, Y. and Thibierge, H., Appl. Phys. Lett. 63, p 2096 (1993).Google Scholar
2. Charbonneau, S., Poole, P. J., Piva, P. G., Aers, G. C., Koteles, E. S., Fallahi, M., He, J.-J., McCaffrey, J. P., Buchanan, M., Dion, M., Goldberg, R. D. and Mitchell, I. V., J. Appl. Phys. 78, p. 3697 (1995).Google Scholar
3. See IEEE Journal of Selected Topics in Quantum Electronics, 4 (1998).Google Scholar
4. Allard, L. B., Aers, G. C., Charbonneau, S., Jackman, T. E., Williams, R. L., Templeton, I. M., Buchanan, M., Stevanovic, D. and Almeida, J., J. Appl. Phys. 76, p. 422 (1992).Google Scholar
5. Koteles, E. S., Charbonneau, S., Poole, P., He, J.-J., Davies, M., Dion, M., Aers, G., Feng, Y., Mitchell, I. V. and Goldberg, R. D., Physics in Canada, September/October, p. 251 (1996).Google Scholar
6. Tan, H.H. and Jagadish, C., Appl. Phys. Lett. 71, p. 2680 (1997).Google Scholar
7. Charbonneau, S., Koteles, E. S., Poole, P. J., He, J. J., Aers, G. C., Haysom, J., Buchanan, M., Feng, Y., Delage, A., Yang, F., Davies, M., Goldberg, R. D., Piva, P. G. and Mitchell, I. V., IEEE J. Selected Topics in Quantum Electronics 4, p. 772 (1998).Google Scholar
8. Williams, J. S., Tan, H. H., Goldberg, R. D., Brown, R. A. and Jagadish, C., Mat. Res. Soc. Symp. Proc. 316, p. 15 (1994).Google Scholar
9. Williams, J. S., Jagadish, C., Clark, A., Li, G. and Larsen, C. A., Nucl Inst. and Meth. B 74, p. 80 (1993).Google Scholar
10. Haynes, T. E. and 0. Holland, W., Nucl. Inst. and Meth. B 59/60, p. 1028 (1991).Google Scholar
11. Tan, H. H., Williams, J. S., Jagadish, C., Burke, P. T. and Gal, M., Mat. Res. Soc. Symp. Proc. 396, p. 823 (1996).Google Scholar
12. Poole, P. J., Charbonneau, S., Aers, G. C., Jackman, T. E., Buchanan, M., Dion, M., Goldberg, R. D. and Mitchell, I. V., J. Appl. Phys. 78, p.2367 (1995).Google Scholar
13. Gibbons, J. F., IEEE 60, p. 1062 (1972).Google Scholar
14. Goldberg, R. D., Mitchell, I. V., Poole, P., Labrie, D., Lafontaine, H., Aers, G. C., Williams, R., Dion, M., Charbonneau, S., Ramanujancha, K. and Weatherly, G. C., Nucl. Inst. And Meth. B 127/128, p. 418 (1997).Google Scholar
15. Hay, H. J., FASTRIM is a version of TRIM85-90 [16] with a modified treatment of the interface regions in multilayered targets, unpublished.Google Scholar
16. Ziegler, J. F., Biersack, J. P. and Littmark, U., The stopping range of ions in solids, Pergamon Press, New York, 1985.Google Scholar
17. Charbonneau, S., Poole, P. J., Aers, G. C., Chen, H., Feenstra, R., Piva, P. G., Goldberg, R. D. and Mitchell, I. V., Physics in Canada, March/April, p. 76 (1998).Google Scholar
18. Chen, H., Feenstra, R. M., Weatherley, G. C., Piva, P. G., Goldberg, R. D., Mitchell, I. V., Aers, G. C., Poole, P. J. and Charbonneau, S., to be submitted to Appl. Phys. Lett.Google Scholar
19. Goldberg, R. D., Tan, H. H., Johnston, M. B., Jagadish, C., Gal, M. and Mitchell, I. V., SPIE 3413, p. 140 (1998).Google Scholar
20. Piva, P. G., Goldberg, R. D., Mitchell, I. V., Chen, H., Feenstra, R. M., Weatherly, G. C., McComb, D. W., Aers, G. C., Poole, P. J. and Charbonneau, S. C., Appl. Phys. Lett. 72, p. 1599 (1998).Google Scholar
21. Piva, P. G., Goldberg, R. D., Mitchell, I. V., Chen, H., Feenstra, R. M., Weatherly, G. C., Aers, G. C., Poole, P. J. and Charbonneau, S., submitted to conference proceedings ICPS-24, August 1998.Google Scholar
22. He, J. J., Charbonneau, S., Poole, P. J., Aers, G. C., Feng, Y., Koteles, E. S., Goldberg, R. D. and Mitchell, I. V., Appl. Phys. Lett. 69, p. 562 (1996).Google Scholar