Published online by Cambridge University Press: 01 February 2011
Present tissue engineering practice requires porous, bioresorbable scaffolds to serve as temporary 3D templates to guide cell attachment, differentiation, and proliferation. Recent research suggests that scaffold material and internal architecture significantly influence regenerate tissue structure and function. However, lack of versatile biomaterials processing methods have slowed progress towards fully testing these findings. Our research investigates using selective laser sintering (SLS) to fabricate bone tissue engineering scaffolds. Using SLS, we have fabricated polycaprolactone (PCL) and polycaprolactone/tri-calcium phosphate composite scaffolds. We report on scaffold design and fabrication, mechanical property measurements, and structural characterization via optical microscopy and micro-computed tomography.