Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T22:45:37.507Z Has data issue: false hasContentIssue false

Self-Assembled Lipid Tubules: Synthesis, Characterization, and Ordered Arrays

Published online by Cambridge University Press:  01 February 2011

Yue Zhao
Affiliation:
yu200043@pegasus.cc.ucf.eduUnviersity of Central FloridaAdvanced Materials Processing and Analysis Center, Dept. of Mechanical, Materials, and AerospaceOrlando FL 32816United States
Nidhi Mahajan
Affiliation:
nidhim@amgen.com, Unviersity of Central Florida, Advanced Materials Processing and Analysis Center, Dept. of Mechanical, Materials, and Aerospace, Orlando, FL, 32816, United States
Jiyu Fang
Affiliation:
jfang@mail.ucf.edu, Unviersity of Central Florida, Advanced Materials Processing and Analysis Center, Dept. of Mechanical, Materials, and Aerospace, Orlando, FL, 32816, United States
Get access

Abstract

The rolling of lipid bilayer sheets into hollow cylindrical tubules have emerged as a group of interesting supramolecular nanostructures. Here, we image the self-assembled tubules of 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphochloline (DC8,9PC) with atomic force microscopy. Nanoscale ripple structures with a periodicity of ~ 200nm in the cylindrical lipid tubules are observed. We develop two simple methods based on microfluidic networks and surface patterning to produce two dimensional ordered arrays of parallel aligned lipid tubules on substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schnur, J. M., Science. 262, 1669(1993).Google Scholar
2. Shimizu, T., Masuda, M., Minamikawa, H., Chem, Rev. 105, 1401(2005).Google Scholar
3. Yager, P., Schoen, P. E., Mol. Cryst. Liq. Cryst. 106, 371(1984).Google Scholar
4. Thomas, B. N., Corcoran, R. C., Cotant, C. L., Lindemann, C. M., Kirsch, J. E., Persichini, P. J., J. Am. Chem. Soc. 120, 12178(1998).Google Scholar
5. Song, J., Cheng, Q., Kopta, S., Stevens, R. C., J. Am. Chem. Soc. 123, 3205(2001).Google Scholar
6. John, G., Masuda, M., Okada, Y., Yase, K., Shimizu, T., Adv. Mater. 13, 715(2001).Google Scholar
7. Lee, S. B., Koepsel, R., Stolz, D. B., Warriner, H. B., Russell, A. J., J. Am. Chem. Soc. 126, 13400(2004).Google Scholar
8. Seddon, A. M., Patel, H. M., Burkett, S. L., Mann, S., Angew. Chem. Int. Ed. 41, 2988(2002).Google Scholar
9. Price, R. R., Dressick, W. J., Singh, A., J. Am. Chem. Soc. 125, 11259(2003).Google Scholar
10. Yang, B., Kamiya, S., Shimizu, Y., Koshizaki, N., Shimizu, T, Chem. Mater. 16, 2826(2004).Google Scholar
11. Zhao, Y., Mahajan, N., Fang, J. Y., Small. 2, 364 (2006).Google Scholar
12. Wilson-Kubalek, E. M., Brown, R. E., Celia, H., Milligan, R. A., Proc. Natl. Acad. Sci. USA. 95, 8040(1998).Google Scholar
13. Melia, T. J., Sowa, M. E., Schutze, L., Wensel, T. G., J. Struct. Biol. 128, 119(1999).Google Scholar
14. Schnur, J. M., Price, R. R., Rudolph, A. S., J. Control. Release. 28, 3(1994).Google Scholar
15. Meilander, N. J., Pasumarthy, M. K., Kowalczyk, T. H., Cooper, M. J., Bellamkonda, R. V., J. Control. Release. 88, 321(2003).Google Scholar
16. Mahajan, N., Zhao, Y., Du, T., Fang, J. Y., Langmuir, 22, 1973(2006).Google Scholar
17. Mahajan, N., Fang, J. Y., Langmuir, 21, 3153(2005).Google Scholar
18. Zhao, Y., Fang, J. Y., Langmuir, 22, 1891(2006).Google Scholar