Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T11:35:38.833Z Has data issue: false hasContentIssue false

Self-Assembled Nano-Needles of Polyaniline, Efficient Structures in Controlling Electrical Conductivity

Published online by Cambridge University Press:  28 January 2011

Michael I. Ibrahim
Affiliation:
LPA-GBMI, Department of Physics, Lebanese University - Faculty of Sciences II, PO Box 90656 Jdeidet, Lebanon, email: gbmi@ul.edu.lb, Tel: +961 3 209688, Fax: +961 1 681553. Université Lyon 1, CNRS, UMR 5615, Laboratoire des Multimatériaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France, email: umit.demirci@univ-lyon1.fr.
Maria J. Bassil
Affiliation:
LPA-GBMI, Department of Physics, Lebanese University - Faculty of Sciences II, PO Box 90656 Jdeidet, Lebanon, email: gbmi@ul.edu.lb, Tel: +961 3 209688, Fax: +961 1 681553.
Umit B. Demirci
Affiliation:
Université Lyon 1, CNRS, UMR 5615, Laboratoire des Multimatériaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France, email: umit.demirci@univ-lyon1.fr.
Georges El Haj Moussa
Affiliation:
LPA-GBMI, Department of Physics, Lebanese University - Faculty of Sciences II, PO Box 90656 Jdeidet, Lebanon, email: gbmi@ul.edu.lb, Tel: +961 3 209688, Fax: +961 1 681553.
Mario R. El Tahchi
Affiliation:
LPA-GBMI, Department of Physics, Lebanese University - Faculty of Sciences II, PO Box 90656 Jdeidet, Lebanon, email: gbmi@ul.edu.lb, Tel: +961 3 209688, Fax: +961 1 681553.
Philippe Miele
Affiliation:
Université Lyon 1, CNRS, UMR 5615, Laboratoire des Multimatériaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France, email: umit.demirci@univ-lyon1.fr.
Get access

Abstract

Polyaniline (PANI) is one of the most interesting conducting polymers with a wide and controllable conductivity range, synthesized easily via chemical or electrical route, stable chemically and environmentally, having high absorption in the visible range and high mobility of charge carriers. Under different conditions, PANI morphology can be controlled yielding to the creation of nano-tubes, belts, rods, fibers and particles.

In this study, the chemical oxidative polymerization which consists of mixing aniline hydrochloride (A-HCl) with ammonium peroxydisulfate (APS) was used to synthesize HCl doped PANI. Fixing the weight ratio A-HCl/APS defined by the IUPAC while varying their quantities leads to the formation of PANI nanoparticles with variable diameters. In addition, PANI nano-needles of 60 nm average diameter at the center are also obtained. Different methods are used to investigate of 1-D morphologies. The electrical conductivity of bulk PANI pellets is measured using the four-point probe technique. The absorption in the visible range of PANI particles and nano-needles is determined by UV-Vis spectroscopy. XRD analysis was performed to study the effect of PANI particle size and morphology on the crystallinity of the powder. Such structures could be used in hybrid solar cells for higher conversion efficiencies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Roe, M., Ginder, J., Wigen, P., Epstein, A., Angelopoulos, M. and MacDiarmid, A., Phys. Rev. Lett. 60, 2789 (1988).Google Scholar
[2] Ryu, K., Kim, K., Park, N., Park, Y. and Chang, S., J Power Sources 103, 305 (2002).Google Scholar
[3] Kukla, A., Shirshov, Y. and Piletsky, S., Sens Actuators B Chem 37, 135 (1996).Google Scholar
[4] Liu, Z., Zhou, J., Xue, H., Shen, L., Zang, H. and Chen, W., Synth Met 156, 721 (2006).Google Scholar
[5] Mirmohseni, A. and Oladegaragoze, A., Synth Met 114, 105 (2000).Google Scholar
[6] Shukla, S., Bharadvaja, A., Tiwari, A., Pilla, S., Parashar, G. and Dubey, G., Adv Mat Lett 1, 129 (2010).Google Scholar
[7] Wang, Y. and Jing, X., J Phys Chem B 112, 1157 (2008).Google Scholar
[8] Li, Z., Blum, F., Bertino, M., Kim, C. and Pillalamarri, S., Sens Actuators B Chem 134, 31 (2008).Google Scholar
[9] Rimbu, G., Stamatin, I., Jackson, C. and Scott, K., J Optoelectronics Advanced Materials 8, 670 (2006).Google Scholar
[10] Roy, S., Kargupta, K., Chakraborty, S. and Ganguly, S., Mater Lett 61, 2535 (2008).Google Scholar
[11] Wang, X., Shao, M., Shao, G., Wu, Z. and Wang, S., J Colloid Interface Sci 332, 74 (2009).Google Scholar
[12] Jung, W., Kim, D., Lee, Y. and McCarthy, S., Mater Res Soc Symp Proc 949 C0705, 2007.Google Scholar
[13] Jung, W., Lee, Y. and McCarthy, S., J Vinyl Addit Technol 13, 76 (2007).Google Scholar
[15] Stejskal, J. and Gilbert, R. G., Pure Appl Chem 74, 857 (2002).Google Scholar
[16] Pouget, J., Jozefowicz, M., Epstein, A., Tang, X., and MacDiarmid, A., Macromolecules 24, 779 (1991).Google Scholar
[17] Li, J., Tang, X., Li, H., Yan, Y. and Zhang, Q., Synth Met 160, 1153 (2010).Google Scholar