Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T07:59:00.706Z Has data issue: false hasContentIssue false

Self-Assembling Functionalized Amino Acids into Unusual Shapes

Published online by Cambridge University Press:  01 February 2011

Justin R. Barone
Affiliation:
Biological Systems Engineering Dept., Virginia Tech, 303 Seitz Hall (0303), Blacksburg, VA 24061, U.S.A.
Naresh K. Budhavaram
Affiliation:
Biological Systems Engineering Dept., Virginia Tech, 303 Seitz Hall (0303), Blacksburg, VA 24061, U.S.A.
Katherine J. Harvey
Affiliation:
Biological Systems Engineering Dept., Virginia Tech, 303 Seitz Hall (0303), Blacksburg, VA 24061, U.S.A.
Get access

Abstract

Multi-component small molecule systems that are amphiphilic or that can hydrogen bond end-to-end or side-to-side have been shown to self-assemble into a variety of shapes including fibers, rods, sheets, plates, spheres, and tubes. Recently, we have identified a simple route to self-assemble the same shapes from one-component systems. The structures form by attaching ethyl vinyl sulfone (EVS) to amino acids in water at room temperature. Choice of amino acid, amount of EVS substitution, and solvent conditions determine the final shape. Functionalized amino acids spontaneously form structures like fibers, spheres, tubes, and donuts when dried from solution. Here we focus on fibers and tubes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dobson, C. M., Nature 426, 884890 (2003).Google Scholar
2. MacPhee, C. E. and Dobson, C. M., Journal of the American Chemical Society 122, 1270712713 (2000).Google Scholar
3. Fowler, D. M., Koulov, A. V., Balch, W. E. and Kelly, J. W., TRENDS in Biochemical Sciences 32 (5), 217224 (2007).Google Scholar
4. Vincent, J., Structural Biomaterials. (Princeton University Press, Princeton, 1990).Google Scholar
5. Loughlin, W. A., Tyndall, J. D. A., Glenn, M. P. and Fairlie, D. P., Chemical Reviews 104 (12), 60856117 (2004).Google Scholar
6. Baskar Raj, S., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. and Warzajtis, B., CrystEngComm 5 (15), 7076 (2003).Google Scholar
7. Philp, D. and Stoddart, J. F., Angewandte Chemie-International Edition 35 (11), 11551196 (1996).Google Scholar
8. Smith, D. K., Chem. Commun. (1), 34-44 (2006).Google Scholar
9. Basit, H., Pal, A., Sen, S. and Bhattacharya, S., Chemistry - A European Journal 14 (21), 65346545 (2008).Google Scholar
10. Brizard, A., Berthier, D., Aimé, C., Buffeteau, T., Cavagnat, D., Ducasse, L., Huc, I. and Oda, R., Chirality 21 (1E), E153E162 (2009).Google Scholar
11. Brizard, A., Dolain, C., Huc, I. and Oda, R., Langmuir 22 (8), 35913600 (2006).Google Scholar
12. Dykes, G. M. and Smith, D. K., Tetrahedron 59, 39994009 (2003).Google Scholar
13. Hirst, Andrew R., Miravet, Juan F., Escuder, B., Noirez, L., Castelletto, V., Hamley, Ian W. and Smith, David K., Chemistry - A European Journal 15 (2), 372379 (2009).Google Scholar
14. Hirst, A. R. and Smith, D. K., Chemistry - A European Journal 11 (19), 54965508 (2005).Google Scholar
15. Hirst, A. R., Smith, D. K., Feiters, M. C., Geurts, H. P. M. and Wright, A. C., J. Am. Chem. Soc. 125 (30), 90109011 (2003).Google Scholar
16. Sagawa, T., Chowdhury, S., Takafuji, M. and Ihara, H., Macromolecular Symposia 237 (1), 2838 (2006).Google Scholar
17. Nam, K. T., Shelby, S. A., Choi, P. H., Marciel, A. B., Chen, R., Tan, L., Chu, T. K., Mesch, R. A., Lee, B. C., Connolly, M. D., Kisielowski, C. and Zuckermann, R. N., Nature Materials 9 (5), 454460 (2010).Google Scholar
18. Jang, D., Lee, Ho Y., Park, M., Seong Nam, R. and Hong, J.-I., Chemistry - A European Journal 16 (16), 48364842 (2010).Google Scholar
19. Kuang, G. C., Ji, Y., Jia, X. R., Li, Y., Chen, E. Q. and Wei, Y., Chem. Mater. 20 (13), 41734175 (2008).Google Scholar
20. Bhattacharya, S., Acharya, S. N. G. and Raju, A. R., Chem. Commun. (17), 2101-2102 (1996).Google Scholar
21. Mather, B. D., Viswanathan, K., Miller, K. M. and Long, T. E., Prog. Polym. Sci. 31, 487531 (2006).Google Scholar
22. Budhavaram, N. K. and Barone, J. R., Journal of Raman Spectroscopy, n/a-n/a (2010).Google Scholar
23. Hernandez, B., Pfluger, F., Nsangou, M. and Ghomi, M., Journal of Physical Chemistry B 113, 31693178 (2009).Google Scholar