Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T04:28:37.574Z Has data issue: false hasContentIssue false

Self-Consistent-Field Kkr-Cpa Calculations in the Atomic-Sphere Approximations

Published online by Cambridge University Press:  25 February 2011

Priabhakar P. Singh
Affiliation:
Department of Chemistry and Materials Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550
A. Gonis
Affiliation:
Department of Chemistry and Materials Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550
Didier De Fontaine
Affiliation:
Department of Materials Science & Mineral Engineering, University of California, Berkeley, California 9,4720 and Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720
Get access

Abstract

We present a formulation of the Korringa-Kohn-Rostoker coherent potential approximation (KKPt-CPA) for the treatment of substitutionally disordered alloys within the KKR atomic-sphere approximation (ASA). This KKR-ASA-CPA represents the first step toward the implementation of a full cell potential CPA, and combines the accuracy of the KKR-CPA method with the flexibility of treating complex crystal structures. The accuracy of this approach has been tested by comparing the self-consistent-field (SCF) KKR-ASA-CPA calculations of Cu-Pd alloys with experimental results and previous SCF-KKR-CPA calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Györffy, D. L. and Stocks, G. M., in Electrons in Disordered Metals and Metallic Surfaces, edited by Phariseau, P., Györffy, B. L., and Schiere, L. (Plenum, New York, 1978), p 89; G. M. Stocks and H. Winter, in Electronic Structure of complex Systems, edited by P. Phariseau and W. M. Tenmmerman (Plenum, NeW York, 1985), p.463; J. S. Faulkner, Prog. Mat. Sci. 27, 1 (1982).Google Scholar
2. Stefanou, N., Zeller, Rt., and Dederichs, P. H., Solid State Commun. 62, 735 (1987); J. Kudrnovský and V. Drchal, Phys. Rev. B 41, 7515 (1990) and references therein.Google Scholar
3. Winter, H., Durham, P. J., Temmerman, W. M., and Stocks, G. M., Phys. Rev. B 33, 2370 (1986).CrossRefGoogle Scholar
4. Ginatempo, B., Guo, G. Y., Temmerman, W. M., Staunton, J. B., and Durham, P. J., Phys. Rev. B 42, 2761 (1990).Google Scholar
5. Davies, M. and Weightman, P., J. Phys. C 17, L1015 (1984).CrossRefGoogle Scholar
6. Wright, H., Weightman, P., Andrews, P. T., Folkerts, W., Flipse, C. F. J., Sawatzky, G. A., Nortnan, D., and Padmore, H., Phys. Rev. B 35, 519 (1987).Google Scholar
7. Andersen, O. K., Phys. Rev. B 12, 3060 (1975); O. K. Andersen and O. Jepsen, Phys Rev. Lett. 53, 2571 (1984).Google Scholar
8. Andersen, O. K., Pawlowska, Z., and Jepsen, O., Phys. Rev. B 34, 5253 (1986).CrossRefGoogle Scholar
9. Singh, Prablhakar P., Solid State Commun. 76, 1223 (1990); Prabhakar P. Singh, D. de Fontaine, and A. Gonis, Phys. Rev. B 44, 8578 (1991).Google Scholar
10. Tetnmerrman, W. M., Györffy, B. L., and Stocks, G. M., J. Phsys. F 8, 2461 (1978).CrossRefGoogle Scholar
11. Skriver, H. L., The LMTO Alethod (Springer-Verlag, Berlin, 1984).Google Scholar
12. Hass, K. C., Velicky, B., and Ehrenreich, H., Phys. Rev. B 29, 3697 (1984).Google Scholar
13. Molenaar, J., Coleridge, P. T., and Lodder, A., J. Phys. C 15, 6955 (1982).Google Scholar