Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T09:56:06.749Z Has data issue: false hasContentIssue false

Self-Diffusion in Chemically Homogeneous Multilayers Using Neutron and Nuclear Resonance Reflectivity

Published online by Cambridge University Press:  01 February 2011

Mukul Gupta
Affiliation:
Laboratory for Neutron Scattering, ETHZ & PSI, Paul Scherrer Institute, Villigen, CH-5232, Switzerland
Ajay Gupta
Affiliation:
Inter University Consortium for DAE facilities, Khandwa Road, Indore, 452017, India
Sujoy Chakravarty
Affiliation:
Inter University Consortium for DAE facilities, Khandwa Road, Indore, 452017, India
T. Gutberlet
Affiliation:
Laboratory for Neutron Scattering, ETHZ & PSI, Paul Scherrer Institute, Villigen, CH-5232, Switzerland
H.-C. Wille
Affiliation:
European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
O. Leupold
Affiliation:
European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
R. Rüffer
Affiliation:
European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
Get access

Abstract

Neutron reflectivity is a well-established technique for studying self-diffusion in chemically homogeneous system as neutron scattering lengths are different for isotopes of an element. For x-ray there is no contrast for a multilayer with isotopic abundance. However, placing Mössbauer active nuclei in a chemically homogeneous system, self-diffusion of the constituents can be probed using nuclear resonance scattering of Mössbauer active nuclei. In the present work, we have applied the neutron reflectivity technique for studying the self-diffusion of iron and nitrogen in nano crystalline multilayers of FeN/57FeN and FeN/Fe15N and nuclear resonance reflectivity techniques for studying iron self diffusion in FeNZr/57FeNZr. Both the techniques are complementary to each other and give a unique depth resolution of the order of 0.1 nm. As compared with conventional techniques used for probing self-diffusion, neutron and nuclear resonance reflectivity techniques can be applied at significantly lower temperatures. On the basis of the obtained results the diffusion mechanism in chemically homogeneous multilayers is discussed in the present work.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Debenedetti, P. G., Stillinger, F. H., Nature 410, 259267(2001).Google Scholar
2. Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F., and Martin, S.W., J. Appl. Phys. 88, 3113 (2000).Google Scholar
3. McHenry, M.E., Willard, M.A., Laughlin, D.E., Prog. Mat. Sci. 44, 291433 (1999).Google Scholar
4. Dunlop, A., Jaskierowicz, G. and Rizza, G., Kopcewicz, M., Phys. Rev. Lett. 90, 015503 (2003).Google Scholar
5. Faupel, F., Frank, W., Macht, M.-P., Mehrer, H., Naundorf, V., Rätzke, K., Schober, H. R., Sharma, S. K., and Teichler, H., Rev. Mod. Phys. 75, 237280 (2003).Google Scholar
6. Gupta, M., Gupta, A., Stahn, J., Horisberger, M., Gutberlet, T. and Allenspach, P., Phys. Rev. B70, 184206 (2004).Google Scholar
7. Gupta, M., Gupta, A., Chakravarty, S., Gutberlet, T., Def. Diffus. Forum (In-press).Google Scholar
8. Greer, A. L., J. Mag. Mag. Mat. 126, 8995 (1993);Google Scholar
Speakman, J., Rose, P., Hunt, J. A., Cowlam, N., Somekh, R. E., Greer, A. L., J. Mag. Mag. Mat. 156, 411412 (1996).Google Scholar
9. Baker, S. M., Smith, G. S., Brown, N. J. S., Nastasi, M., and Hubbard, K., Phys. Rev. B55, 72557263 (1997).Google Scholar
10. Gupta, A., Gupta, M., Dasannacharya, B. A., Kikuta, S., Yoda, Y., Seto, M., J. Jpn. Phys. Soc. 73, 423429 (2004).Google Scholar
11. Gupta, A., Gupta, M., Chakravarty, S., Rüffer, R., Wille, H.-C., Leupold, O., Phys. Rev. B, submitted..Google Scholar
12. Chumakov, A. I. and Smirnov, G. V., JETP Lett. 53, 273 (1991).Google Scholar
13. Gupta, M., Gutberlet, T., Stahn, J., Keller, P. and Clemens, D. Pramana-J. Phys 63, 57 (2004).Google Scholar
14. Rüffer, R., Chumakov, A.I., Hyperfine Interactions 97/98, 589 (1996). See also http://www.esrf.fr/exp_facilities/ID18/ Google Scholar
15. Gupta, M., Gupta, A., Bhattacharya, P., Misra, P. and Kukreja, L. M., J. Alloys and Compounds 326, 265 (2001).Google Scholar
16. Speakman, J., Rose, P., Hunt, J.A., Cowlam, N., Somekh, R. E., Greer, A.L., J. Magn. Magn. Mat. 156, 411412 (1996).Google Scholar
17. Gupta, M., Gupta, A., Rajagopalan, S., and Tyagi, A. K., Phys. Rev. B65, 214204 (2002).Google Scholar