Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T08:40:50.481Z Has data issue: false hasContentIssue false

Self-Interstitial clusters in silicon

Published online by Cambridge University Press:  17 March 2011

M. M. De Souza
Affiliation:
Emerging Technologies Research Centre, De Montfort University, Leicester, United Kingdom, LE1 9BH.
M. P. Chichkine
Affiliation:
Emerging Technologies Research Centre, De Montfort University, Leicester, United Kingdom, LE1 9BH.
E. M. Sankara Narayanan
Affiliation:
Emerging Technologies Research Centre, De Montfort University, Leicester, United Kingdom, LE1 9BH.
Get access

Abstract

In this paper we propose structural models of self-interstitial clusters in silicon using the empirical potential method. Novel, fully co-ordinated compact clusters based on the hexagonal interstitial up to size four have been proposed. The energetics of their formation indicates that energy minimisation occurs due to elimination of dangling bonds. While the conventional dangling bond model yields an exponential decrease in the formation energy with size, we observe stable defects for sizes in multiples of four. The energy barrier required for a transition from compact model to the dangling bond chain model can possibly explain the experimentally observed energy barrier for sizes greater than eight.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Salisbury, I. G. and Loretto, M. H., Philosophical Mag. A 39, 317 (1979).10.1080/01418617908236903Google Scholar
[2] Stolk, P. A., Gossmann, H. J., Eaglesham, D. J., Jacobson, D. C., Rafferty, C. S., Gilmer, G. H., Jaraiz, M. and Poate, J. M., J. Appl. Phys 81, 6031 (1997).10.1063/1.364452Google Scholar
[3] Kim, J., Wilkins, J. W., Khan, F. S. and Canning, A., Phys. Rev. B 55, 16186 (1997).10.1103/PhysRevB.55.16186Google Scholar
[4] Using the notation in Takeda, S., Jpn. J. Appl. Phys. 30, L639 (1991); M. Kohyama and S. Takeda, Phys. Rev. B 46, 12305 (1992).10.1143/JJAP.30.L639Google Scholar
[5] Ackland, G. J., Phys. Rev. B 40, 10351 (1989); 44, 3900 (1991).10.1103/PhysRevB.40.10351Google Scholar
[6] Blochl, P., Smargiassi, E., Car, R. R., Laks, D. B., Andreoni, W. and Pantelides, S. T., PRL 70,2435 (1993).10.1103/PhysRevLett.70.2435Google Scholar
[7] Zhu, J. in Defects and Diffusion in silicon processing, MRS Proceedings Vol 469, edited by Rubia, T. De la, Coffa, S., Stolk, P. and Rafferty, C., p. 151 (1997).Google Scholar
[8] Souza, M. M. De, Ngw, C. K., Shishkin, M. and Narayanan, E. M. Sankara, Phys. Rev. Lett. 83, 1799 (1999).10.1103/PhysRevLett.83.1799Google Scholar
[9] Tan, T. Y., Phil. Mag. A 44, 101 (1981).10.1080/01418618108244497Google Scholar
[10] Kim, J.et al PRL 84, 503 (2000) Phys. Rev. Lett. 83, 1990 (1999).10.1103/PhysRevLett.84.503Google Scholar
[11] Chichkine, M. P., Souza, M. M. De and Narayanan, E. M. Sankara, submitted to PRL.Google Scholar
[12] AraI, N., Takeda, S. and Kohyama, M., Phy. Rev. Lett. 78, 42 (1997).10.1103/PhysRevLett.78.4265Google Scholar
[13] Cowern, N. E. B., Mannino, G., Stolk, P. A., Roozeboom, F., Huizing, H. G. A., Berkum, J. G. M. Van, Cristiano, F., Claverie, A. and Jaraiz, M., Phys. Rev. Lett. 82, 4460 (1999).10.1103/PhysRevLett.82.4460Google Scholar