Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T02:27:12.514Z Has data issue: false hasContentIssue false

Self-Organization of Steps and Domain Boundaries of 7×7 Reconstruction on Si(111)

Published online by Cambridge University Press:  10 February 2011

H Hibino
Affiliation:
NTT Basic Research Laboratories, Atsugi, Kanagawa 243–0198, Japan
Y. Homma
Affiliation:
NTT Basic Research Laboratories, Atsugi, Kanagawa 243–0198, Japan
T. Ogino
Affiliation:
NTT Basic Research Laboratories, Atsugi, Kanagawa 243–0198, Japan
Get access

Abstract

We describe three different aspects of the self-organization of steps and domain boundaries of a 7×7 reconstruction on SI(111) surfaces. The first is the formation of a triangular-tiled pattern of “1×1’ and 7×7 domains during the phase transition. ‘1÷1’ and 7×7 domains have different surface stresses. The triangular-tiled pattern is stabilized through stress relaxation. The second is the step arrangement inside a hole, which was fabricated by a standard lithographic technique. The step arrangement in the hole depends on the temperature. Below the ‘1×1’-to-7×7 phase transition, the hole has a three-fold symmetry consisting of step-bunched and non-bunched regions. This is because the step arrangement on the vicinal Si(111) surfaces depends on the direction of the steps. The third aspect is the formation of a pattern of steps and domain boundaries induced by Si growth. During the step-flow growth on Si(111), steps preferentially protrude along the domain boundaries on the lower terrace. The resulting changes in step shape induce a unique rearrangement of the domain boundaries, the number of which decreases during growth. However, when a periodic pattern is formed in the initial stages, it remains stable during growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Eaglesham, D. J. and Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
[2]Notzel, R., Temmyo, J., and Tamamura, T., Nature 369, 132 (1994).Google Scholar
[3]Leonard, D., Krishnamurthy, M., Reaves, C. M., Debaars, S. P., and Petroff, P. M., Appl. Phys. Lett. 63, 3203 (1993).Google Scholar
[4]Xie, Q., Madhukar, A., Chen, R, and Kobayashi, N. P., Phys. Rev. Lett. 75, 2542 (1995).Google Scholar
[5]Tersoff, J., Teichert, C., and Lagally, M. G., Phys. Rev. Lett. 76, 1675 (1996).Google Scholar
[6]Kitamura, M., Nishioka, M., Oshinowo, J., Arakawa, Y., Appl. Phys. Lett. 66, 3663 (1995).Google Scholar
[7] S. Yu. Shiryaev, Jensen, F., Hansen, J. Lundsgaard, Petersen, J. Wulff, and Larsen, A. Nylandsted, Phys. Rev. Lett. 78, 503 (1997).Google Scholar
[8]Kamins, T. I. and Williams, R. Stanley, Appl. Phys. Lett. 71, 1201 (1997).Google Scholar
[9]Jin, G., Liu, J. L., Thomas, S. G., Luo, Y. H., Wang, K. L., and Bich-Yen Nguyen Appl. Phys. Lett. 75, 2752 (1999).Google Scholar
[10]Deng, X. and Krishnamurthy, M., Phys. Rev. Lett. 81, 1473 (1998).Google Scholar
[11]Kohler, U., Jusko, O., Pietsh, G., MiIller, B., and Henzler, M., Surf. Sci. 248, 321 (1991).Google Scholar
[12]Hibino, H., Shimizu, N., and Shinoda, Y., J. Vac. Sci. Technol. A 11, 2458 (1993).Google Scholar
[13]Hibino, H., Shimizu, N., Shinoda, Y., and Ogino, T., Mat. Res. Soc. Symp. Proc. 317, 41 (1994).Google Scholar
[14]Homma, Y., Suzuki, M., and Tomita, M., Appl. Phys. Lett. 62, 3276 (1993).Google Scholar
[15]Hibino, H., Homma, Y., and Ogino, T., Surf. Sci. Lett. 364, L587 (1996).Google Scholar
[16]Yamaguchi, H. and Yagi, K., Surf. Sci. 287/288, 820 (1993).Google Scholar
[17]Hibino, H., Homma, Y., and Ogino, T., Phys. Rev. B 58, R7503 (1998).Google Scholar
[18]Hoshino, M., Shigeta, Y., Ogawa, K., and Homma, Y., Surf. Sci. 365, 29 (1996).Google Scholar
[19]Yagi, K., Yamanaka, A., Sato, H., Shima, M., Ohse, H., Ozawa, S., and Tanishiro, Y., Prog. Theor. Phys. Supp. 106, 303 (1991).Google Scholar
[20]Twesten, R. D. and Gibson, J. M., Phys. Rev. B 50, 17628 (1993).Google Scholar
[21]Hibino, H., Homma, Y., Bartelt, N. C., and Ogino, T., (to be published).Google Scholar
[22]Phaneuf, R. J. and Williams, E. D., Phys. Rev. Lett. 58, 2563 (1987).Google Scholar
[23]Phaneuf, R. J., Williams, E. D., and Bartelt, N. C., Phys. Rev. B 38, 1984 (1988).Google Scholar
[24]Williams, E. D. and Bartelt, N. C., Science 251, 393 (1991).Google Scholar
[25]Wei, J., Wang, X.-S., Goldberg, J. L., Bartelt, N. C., and Williams, E. D., Phys. Rev. Lett. 68, 3885 (1992).Google Scholar
[26]Williams, E. D., Phaneuf, R. J., Wei, J., Bartelt, N. C., and Einstein, T. L., Surf. Sci. 294, 219 (1993).Google Scholar
[27]Hibino, H. and Ogino, T., Phys. Rev. Lett. 72, 657 (1994).Google Scholar
[28]Hibino, H., Fukuda, T., Suzuki, M., Homma, Y., Sato, T., Iwatsuki, M., Miki, K., and Tokumoto, H., Phys. Rev. B 47, 13027 (1993).Google Scholar
[29]Ogino, T., Hibino, H., and Homma, Y., Jpn. J. Appl. Phys. 34, L668 (1995).Google Scholar
[30]Ogino, T., Hibino, H., and Homma, Y., Appl. Surf. Sci. 107, 1 (1995).Google Scholar
[31]Ogino, T., Hibino, H., and Homma, Y., Appl. Surf. Sci. 117/118, 642 (1997).Google Scholar
[32]Homma, Y., Hibino, H., Kunii, Y., and Ogino, T., Surf. Sci. (to be published).Google Scholar
[33]Jayaprakash, C., Rottman, C., and Saam, W. F., Phys. Rev. B 39, 6549 (1984).Google Scholar
[34]Hibino, H. and Ogino, T., Appl. Phys. Lett. 67, 915 (1995).Google Scholar
[35]Kawamura, T., Hibino, H., and Ogino, T., Jpn. J. Appl. Phys. 38, 1530 (1999).Google Scholar
[36]Tung, R. T. and Schrey, F., Phys. Rev. Lett. 63, 1277 (1989).Google Scholar
[37]Tung, R. T., Schrey, F., and Eaglesham, D. J., J. Vac. Sci. Technol. B 8, 237 (1990).Google Scholar
[38]Hasegawa, T., Kohno, M., Hosaka, S., and Hosoki, S., Phys. Rev. B 48, 1943 (1993).Google Scholar
[39]Tabe, M., Jpn. J. Appl. Phys. 34, L1375 (1995).Google Scholar
[40]Finnie, P. and Homma, Y., Appl. Phys. Lett. 72, 827 (1998).Google Scholar