Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T10:08:48.083Z Has data issue: false hasContentIssue false

Semiconductor surface – molecule interactions: a case study in the wet etching of InP by α-hydroxy acids

Published online by Cambridge University Press:  01 February 2011

Prabhakar Bandaru*
Affiliation:
Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095
*
* Currently at the University of California, San Diego
Get access

Abstract

The controllable etching of InP semiconductor surfaces is desired in removing damaged layers for facilitating regrowth and obtaining good electronic properties. We have observed that organic acids (α-hydroxy acids: tartaric, lactic, citric and malic) used in conjunction with HCl to etch (100) InP result in smoother and defect free surfaces, in comparison to etches based on inorganic acids alone. The chelating action of the organic acids aids in efficiently removing In from the surface. Based on these results, it is hypothesized that a consideration of the energy levels of the semiconductor and adsorbed molecules could help in devising new semiconductor etchants.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Liu, W. Fundamentals of III-V devices, John Wiley, New York, 1999.Google Scholar
2. Vrijen, R. et al., Phys. Rev. A 62, 012306 (2000).Google Scholar
3. Yablonovitch, E., et al, Appl. Phys. Lett., 60, 371 (1992).Google Scholar
4. Hoffmann, R. Solids and Surfaces, A chemist's view of bonding in extended structures (VCH Publishers, New York, 1988).Google Scholar
5. Yablonovitch, E., et al, Appl. Phys. Lett., 54, 555 (1989).Google Scholar
6. Vilan, A., Shanzer, A. & Cahen, D. Nature, 404, 166 (2000).Google Scholar
7. Irving, B. A. The Electrochemistry of Semiconductors (ed. Holmes, P. J.) Academic Press, New York, (1962).Google Scholar
8. Faust, J.W., Compound Semiconductors: Preparation of III-V Compounds (eds. Willardson, R. K. & Goering, H. L.) Reinhold Publishing Corp., New York, (1962).Google Scholar
9. Notten, P. H. L., Etching of III-V Semiconductors: An Electrochemical Approach (eds. Meerakker, E. A. M. & Kelly, J. J.) Elsevier, New York, (1991).Google Scholar
10. Vermeir, I. E., Gomes, W. P. & Daele, P. V, Journal of the Electrochemical Society 142, 3227 (1995).Google Scholar
11. Walker, P. CRC Handbook of Metal Etchants (eds. Walker, P. & Tarn, W. H.) CRC Press, Boston, MA, (1991).Google Scholar
12. Gatos, H. C. & Lavine, M. C., J. Phys. Chem. Solids, 14, 169 (1960).Google Scholar
13. Ikossi-Anastasiou, K. et al, J. Electrochem. Soc., 142, 3358 (1995).Google Scholar
14. Elias, P. et al, Mater. Sci. & Engg. B, B66, 15 (1999).Google Scholar
15. Bandaru, P. & Yablonovitch, E., J. Electrochem. Soc., 149, G599 (2002).Google Scholar
16. CRC Handbook of Chemistry and Physics (ed. Lide, D. R.) CRC Press, Boston, (2000).Google Scholar
17. Morrison, R. T. & Boyd, R. N. Organic Chemistry (Allyn & Bacon Inc., Boston, 1983).Google Scholar
18. Houk, K. N. et al. J. Amer. Chem. Soc., 105, 5563 (1983).Google Scholar
19. UV-Vis ATLAS of Organic Compounds (ed. Perkampus, H. H.) (VCH Publishers, New York, 1992).Google Scholar
20. Sze, S. M. Physics of Semiconductor Devices (John Wiley, New York, 1981).Google Scholar
21. Yablonovitch, E., Sandroff, C. J., Bhat, R. & Gmitter, T. J. Appl. Phys. Lett., 51, 439 (1987).Google Scholar