Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-30T22:37:14.205Z Has data issue: false hasContentIssue false

Shape Memory Actuation by Resistive Heating in Polyurethane Composites of Carbonaceous Conductive Fillers

Published online by Cambridge University Press:  01 February 2011

I. Sedat Gunes
Affiliation:
isg1@uakron.edu, The University of Akron, Polymer Engineering, Akron, Ohio, United States
Guillermo A Jimenez
Affiliation:
wili34@yahoo.com, The University of Akron, Polymer Engineering, Akron, Ohio, United States
Sadhan C Jana
Affiliation:
janas@uakron.edu, The University of Akron, Polymer Engineering, Akron, Ohio, United States
Get access

Abstract

The dependence of electrical resistivity on specimen temperature and imposed tensile strains was determined for shape memory polyurethane (SMPU) composites of carbon nanofiber (CNF), oxidized carbon nanofiber (ox-CNF), and carbon black (CB). The SMPU composites with crystalline soft segments were synthesized from diphenylmethane diisocyanate, 1,4-butanediol, and poly(caprolactone)diol in a low-shear chaotic mixer and in an internal mixer. The materials synthesized in the chaotic mixer showed higher soft segment crystallinity and lower electrical percolation thresholds. The soft segment crystallinity reduced in the presence of CNF and ox-CNF; although the reduction was lower in the case of ox-CNF. The composites of CB showed pronounced positive temperature coefficient (PTC) effects which in turn showed a close relationship with non-linear thermal expansion behavior. The composites of CNF and ox-CNF did not exhibit PTC effects due to low levels of soft segment crystallinity. The resistivity of composites of CNF and ox-CNF showed weak dependence on strain, while that of composites of CB increased by several orders of magnitude with imposed tensile strain. A corollary of this study was that a high level of crystallinity may cause a PTC effect and prevent any actuation through resistive heating. However, a carefully tailored compound which has reduced crystallinity and which requires minimum amount of filler may prevent PTC phenomenon and could supply necessary electrical conductivity over the operating temperature range, while offering enough soft segment crystallinity and rubberlike properties for excellent shape memory function.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hayashi, S., Kondo, S., Kapadia, P., Ushioda, E., Plast. Eng. 51, 29 (1995)Google Scholar
2. Lendlein, A., Kelch, S., Angew. Chem. Int. Ed. 41, 2034 (2002)Google Scholar
3. Beloshenko, V. A., Varyukhin, V. N., Voznyak, Yu. V., Russ. Chem. Rev. 74, 265 (2005)Google Scholar
4. Liu, C., Qin, H., Mather, P. T., J. Mater. Chem. 17, 1543 (2007)Google Scholar
5. Gunes, I. S. and Jana, S. C., Nanosci, J.. Nanotechnol. 8, 1616 (2008)Google Scholar
6. Koerner, H., Price, G., Pearce, N. A., Alexander, M., and Vaia, R., Nat. Mater. 3, 115 (2004)Google Scholar
7. Paik, I. H., Goo, N. S., Yoon, K. J., Jung, Y. C., Cho, J. W.. Key Eng. Mater. 297-300, 1539 (2005)Google Scholar
8. Leng, J. S., Huang, W. M., Lan, X., Liu, Y. J., Du, S. Y.. Appl. Phys. Lett. 92, 204101 (2008)Google Scholar
9. Tobushi, H., Hashimoto, T., Hayashi, S., Yamada., E. J. Intel. Mat. Syst. Str. 8, 711 (1997)Google Scholar
10. Gall, K., Dunn, M. L., Liu, Y., Finch, D., Lake, M., Munshi, N. A., Acta Mater. 50, 5115 (2002)Google Scholar
11. Gunes, I. S., Cao, F., Jana, S. C., Polym, J.. Sci. Polym. Phys. 46, 1437 (2008)Google Scholar
12. Gunes, I. S., Cao, F., Jana, S. C., Polymer 49, 2223 (2008)Google Scholar
13. Verhelst, W. F., Wolthuis, K. G., Voet, A., Ehrburger, P., and Donnet, J. B., Rubber Chem. Technol. 50, 735 (1977)Google Scholar
14. Jung, C., Gunes, I. S., and Jana, S. C., Ind. Eng. Chem. Res., 46, 2413 (2007)Google Scholar
15. Jimenez, G. A. and Jana, S. C., Compos. Part A.-Appl. S. 38, 983 (2007)Google Scholar
16. Jimenez, G. A. and Jana, S. C., Carbon 45, 2079 (2007)Google Scholar
17. Li, F. K., Hou, J. N., Zhu, W., Zhang, X., Xu, M., Luo, X. L., Ma, D. Z., and Kim, B. K., J. Appl. Polym. Sci. 62; 631 (1996)Google Scholar
18. Lipatov, Yu. S. and Sergeeva, L. M., Adsorption of polymers. (Wiley, New York, 1974) (chapter 4)Google Scholar
19. Fitchmun, D. and Newman, S., J. Polm. Sci. Polym. Lett. Ed. 7, 301 (1969)Google Scholar
20. Fitchmun, D. R. and Newman, S., J. Polym. Sci. Part A-2 8, 1545 (1970)Google Scholar
21. Lopez, L. C. and Wilkes, G. L., J. Thermoplas. Compos. Mater. 4, 58 (1991)Google Scholar
22. Desio, G. P. and Rebenfeld, L., J. Appl. Polym. Sci. 44, 1989 (1992)Google Scholar
23. Ping, P., Wang, W., Chen, X. and Jing, X., J. Polym. Sci. Part B. Polym. Phys. 45, 557 (2007)Google Scholar
24. Bulgin, D., Rubber Chem. Technol. 19, 667 (1946)Google Scholar