Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T14:20:02.975Z Has data issue: false hasContentIssue false

Shocked Energetic Molecular Materials: Chemical Reaction Initiation and Hot Spot Formation

Published online by Cambridge University Press:  15 February 2011

M. D. Fayer
Affiliation:
Department of Chemistry, Stanford University, Stanford, CA 94305
Andrei Tokmakoff
Affiliation:
Department of Chemistry, Stanford University, Stanford, CA 94305
Dana D. Dlott
Affiliation:
School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Get access

Abstract

A theoretical model is developed to describe multiphonon up-pumping of internal vibrations. The dominant mechanism for up-pumping is anharmonic coupling of excited phonon modes with low frequency molecular vibrations, termed doorway modes. Quantitative calculations were performed which show the extent and rate of multiphonon up-pumping caused by shock excitation. The time dependence of chemical reactivity behind the front is calculated using reaction rate laws for the decomposition of nitramine explosives. A mechanism for hot spot formation, based on defect induced local increases in anharmonic coupling, is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Coffey, C. S.; Toton, E. T. J. Chem. Phys. 1982, 76, 949.CrossRefGoogle Scholar
(2) Trevino, S. F.; Tsai, D. H. J. Chem. Phys. 1984, 81, 348.CrossRefGoogle Scholar
(3) Zerilli, F. J.; Toton, E. T. Phys. Rev. B 1984, 29, 5891.CrossRefGoogle Scholar
(4) Walker, F. E. J. Appl. Phys. 1988, 63, 5548.Google Scholar
(5) a. Tomakoff, Andrei, Fayer, M. D., and Dlott, D. D., J. Phys. Chem. accepted 1993 b. Dlott, D. D.; Fayer, M. D. J. Chem. Phys. 1990, 92, 3798.Google Scholar
(6) Wei, T. G.; Wyatt, R. E. J. Phys. Condens. Matter 1990, 2, 9787.Google Scholar
(7) Tarver, C. M. Combustion andFlame 1982, 46, 157.CrossRefGoogle Scholar
(8) Bardo, R. D. Int. J. Quantum Chem. S 1986, 20, 455.Google Scholar
(9) Eyring, H.; Powell, R. E.; Duffrey, G. H.; Darlin, R. B. Chem. Rev. 1949, 45, 69. Eyring, H. Science 1978, 199, 740.Google Scholar
(10) Chen, S.; Lee, I.-Y. S.; Tolbert, W. A.; Wen, X.; Dlott, D. D. J. Phys. Chem. 1992, in press.Google Scholar
(11) Dlott, D. D. In Shock Compression in Condensed Matter 1991; S. C. Schmidt, R. D.Google Scholar
(12) Wen, X.; Tolbert, W. A.; Dlott, D. D. Chem. Phys. Lett. 1992, 192, 315.Google Scholar
(13) Mader, C. L. Numerical Modeling of Detonations; University of California Press: Berkeley, CA, 1979.Google Scholar
(14) Johnson, J. N.; Tang, P. K.; Forest, C. A. J. Appl. Phys. 1985, 57, 4323. Johnson, J. N. Proc. Roy. Soc. London A 1987, 413, 329. Johnson, J. N. In Shock Waves in Condensed Matter, 1988; S. C. Schmidt and N. C. Holmes, Ed.; North-Holland: Amsterdam, 1988; p 527. Karo, A. M.; Hardy, J. R. J. Phys. (Paris)C 1987, 9, 235.Google Scholar
(15) Bowden, F. P.; Yoffe, A. D. Fast Reactions in Solids; Academic Press: New York, 1958.Google Scholar
(16) Campbell, A. W.; Davis, W. C.; Travis, J. R. Phys. Fluids 1961, 4, 498. Mader, C L. Phys. Fluids 1963, 6, 375.Google Scholar
(17) Armstrong, R. W.; Coffey, C. S.; Elban, W. L. Acta Metall. 1982, 30, 2111. Armstrong, R. W.; Elban, W. L. “Microstructural origins of hot spots in RDX crystals,” Chemical Propulsion Information Agency Publication #475, 1987. Elban, W. L.; Hoffsommer, J. C.; Armstrong, R. W. J.Mat. Sci. 1984, 19, 552.Google Scholar
(18) McGuire, R. R. Working Group Meeting on the Sensitivity of Explosives; Center for Technology and Research, New Mexico Insitute of Technology, 1987; p 624.Google Scholar
(19) Wilson, W. L.; Wackerle, G.; Fayer, M. D. J. Chem. Phys. 1987, 87, 2498.CrossRefGoogle Scholar
(20) Tsai, D. H. J. Chem. Phys. 1991, 95, 7497.CrossRefGoogle Scholar
(21) Tang, P. K.; Johnson, J. N.; Forest, C. A. In Proceedings of the Eighth International Symposium on Detonation Processes, Office of Naval Research: Silver Spring, MD, 1985; p 52.Google Scholar
(22) Kassoy, D. R.; Kapila, A.; Stewart, D. S. Combust. Sci. Tech. 1989, 63, 33.Google Scholar
(23) Taylor, B. C.; Ervin, L. W. In Proceedings of the Seventh InternationalS ymposium on Detonation Processes, Office of Naval Research: Silver Spring, MD, 1982; p 3.Google Scholar
(24) Neilson, A. T. In Working Group Meeting ono the Sensitivity of Explosives; Center for Technology and Research, New Mexico Insitute of Technology, 1987; p 56.Google Scholar