Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-30T23:18:09.589Z Has data issue: false hasContentIssue false

Silica Coated Multifunctional Plasmonic Nanoparticles for Theranostics

Published online by Cambridge University Press:  12 September 2013

G.A. Sotiriou*
Affiliation:
Particle Technology Laboratory, sotiriou@ptl.mavt.ethz.ch
S.E. Pratsinis
Affiliation:
Institute of Process Engineering, Department of Mechanical and Process Engineering Swiss Federal Institute of Technology (ETH Zurich)
Get access

Abstract

Hybrid magnetic/plasmonic nanoparticles possess properties originating from each individual material. Such properties are beneficial for biological applications including bio-imaging, targeted drug delivery, in vivo diagnosis and therapy. Limitations regarding their stability and toxicity, however, challenge their safe use. Here, the one-step flame synthesis of composite SiO2-coated Ag/Fe2O3 nanoparticles is demonstrated. The hermetic SiO2 coating does not influence the morphology, the superparamagnetic properties of the iron oxide particles and the plasmonic optical properties of the silver particles. Therefore, the hybrid SiO2-coated Ag/Fe2O3 nanoparticles exhibit desired properties for their employment in bio-applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer Nano Lett. 2005, 5, 829834.CrossRefGoogle ScholarPubMed
Zeng, H.; Sun, S. H. Syntheses, properties and potential applications of multicomponent magnetic nanoparticles Adv. Funct. Mater. 2008, 18, 391400.CrossRefGoogle Scholar
Aaron, J.; Travis, K.; Harrison, N.; Sokolov, K. Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling Nano Lett. 2009, 9, 36123618.CrossRefGoogle ScholarPubMed
Jiang, J.; Gu, H. W.; Shao, H. L.; Devlin, E.; Papaefthymiou, G. C.; Ying, J. Y. Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation Adv. Mater. 2008, 20, 44034407.CrossRefGoogle Scholar
Wang, C. G.; Chen, J.; Talavage, T.; Irudayaraj, J. Gold nanorod/Fe3O4 nanoparticle “Nano-pearl-necklaces” for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells Angew. Chem.-Int. Edit. 2009, 48, 27592763.CrossRefGoogle ScholarPubMed
Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing Nat. Mater. 2005, 4, 435446.CrossRefGoogle Scholar
Das, G. K.; Tan, T. T. Y. Rare-earth-doped and codoped Y2O3 nanomaterials as potential bioimaging probes J. Phys. Chem. C 2008, 112, 1121111217.CrossRefGoogle Scholar
Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Fluorescence intermittency in single cadmium selenide nanocrystals Nature 1996, 383, 802804.CrossRefGoogle Scholar
Singh, S.; D'Britto, V.; Prabhune, A. A.; Ramana, C. V.; Dhawan, A.; Prasad, B. L. V. Cytotoxic and genotoxic assessment of glycolipid-reduced and -capped gold and silver nanoparticles New J. Chem. 2010, 34, 294301.CrossRefGoogle Scholar
Sotiriou, G. A.; Pratsinis, S. E. Antibacterial activity of nanosilver ions and particles Environ. Sci. Technol. 2010, 44, 56495654.Google ScholarPubMed
Sotiriou, G. A.; Pratsinis, S. E. Engineering nanosilver as an antibacterial, biosensor and bioimaging material Curr. Opin. Chem. Eng. 2011, 1, 310.CrossRefGoogle ScholarPubMed
Sotiriou, G. A.; Teleki, A.; Camenzind, A.; Krumeich, F.; Meyer, A.; Panke, S.; Pratsinis, S. E. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area Chem. Eng. J. 2011, 170, 547554.CrossRefGoogle ScholarPubMed
Lee, K. J.; Nallathamby, P. D.; Browning, L. M.; Osgood, C. J.; Xu, X. H. N. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos ACS Nano 2007, 1, 133143.CrossRefGoogle ScholarPubMed
Sotiriou, G. A.; Franco, D.; Poulikakos, D.; Ferrari, A. Optically Stable Biocompatible Flame-Made SiO2-Coated Y2O3:Tb3+ Nanophosphors for Cell Imaging ACS Nano 2012, 6, 38883897.CrossRefGoogle ScholarPubMed
Sotiriou, G. A. Biomedical applications of multifunctional plasmonic nanoparticles Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2012, in press, DOI: 10.1002/wnan.1190.Google ScholarPubMed
Sotiriou, G. A.; Hirt, A. M.; Lozach, P. Y.; Teleki, A.; Krumeich, F.; Pratsinis, S. E. Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles Chem. Mater. 2011, 23, 19851992.CrossRefGoogle ScholarPubMed
Lu, A. H.; Salabas, E. L.; Schuth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application Angew. Chem.-Int. Edit. 2007, 46, 12221244.CrossRefGoogle ScholarPubMed
Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles Nano Lett. 2005, 5, 379382.CrossRefGoogle ScholarPubMed
Weissleder, R.; Elizondo, G.; Wittenberg, J.; Rabito, C. A.; Bengele, H. H.; Josephson, L. Ultrasmall superparamagnetic iron-oxide - Characterization of a new class of contrast agents for MR imaging Radiology 1990, 175, 489493.CrossRefGoogle ScholarPubMed
Teleki, A.; Heine, M. C.; Krumeich, F.; Akhtar, M. K.; Pratsinis, S. E. In situ coating of flame-made TiO2 particles with nanothin SiO2 films Langmuir 2008, 24, 1255312558.CrossRefGoogle ScholarPubMed
Teleki, A.; Suter, M.; Kidambi, P. R.; Ergeneman, O.; Krumeich, F.; Nelson, B. J.; Pratsinis, S. E. Hermetically coated superparamagnetic Fe2O3 particles with SiO2 nanofilms Chem. Mater. 2009, 21, 20942100.CrossRefGoogle Scholar
Teleki, A.; Akhtar, M. K.; Pratsinis, S. E. The quality of SiO2-coatings on flame-made TiO2-based nanoparticles J. Mater. Chem. 2008, 18, 35473555.CrossRefGoogle Scholar
Sotiriou, G. A.; Sannomiya, T.; Teleki, A.; Krumeich, F.; Vörös, J.; Pratsinis, S. E. Non-toxic dry-coated nanosilver for plasmonic biosensors Adv. Funct. Mater. 2010, 20, 42504257.CrossRefGoogle ScholarPubMed
Lim, J.; Eggeman, A.; Lanni, F.; Tilton, R. D.; Majetich, S. A. Synthesis and single-particle optical detection of low-polydispersity plasmonic-superparamagnetic nanoparticles Adv. Mater. 2008, 20, 17211726.CrossRefGoogle Scholar
Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors Nat. Mater. 2008, 7, 442453.CrossRefGoogle ScholarPubMed
Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics Nature 2003, 424, 824830.CrossRefGoogle ScholarPubMed
Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, R. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii Environ. Sci. Technol. 2008, 42, 89598964.CrossRefGoogle Scholar
Schrand, A. M.; Braydich-Stolle, L. K.; Schlager, J. J.; Dai, L. M.; Hussain, S. M. Can silver nanoparticles be useful as potential biological labels? Nanotechnology 2008, 19, 235104235117.CrossRefGoogle ScholarPubMed
Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing Annu. Rev. Phys. Chem. 2007, 58, 267297.CrossRefGoogle Scholar
Mueller, R.; Madler, L.; Pratsinis, S. E. Nanoparticle synthesis at high production rates by flame spray pyrolysis Chem. Eng. Sci. 2003, 58, 19691976.CrossRefGoogle Scholar
Madler, L.; Stark, W. J.; Pratsinis, S. E. Simultaneous deposition of Au nanoparticles during flame synthesis of TiO2 and SiO2 J. Mater. Res. 2003, 18, 115120.CrossRefGoogle Scholar
Brem, F.; Tiefenauer, L.; Fink, A.; Dobson, J.; Hirt, A. M. A mixture of ferritin and magnetite nanoparticles mimics the magnetic properties of human brain tissue Phys. Rev. B 2006, 73, 224427(1-6).CrossRefGoogle Scholar
Peters, C.; Dekkers, M. J. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size Phys. Chem. Earth 2003, 28, 659667.CrossRefGoogle Scholar
Gole, A.; Agarwal, N.; Nagaria, P.; Wyatt, M. D.; Murphy, C. J. One-pot synthesis of silica-coated magnetic plasmonic tracer nanoparticles Chem. Comm. 2008, 61406142.CrossRefGoogle ScholarPubMed