Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T14:13:26.876Z Has data issue: false hasContentIssue false

Silicon Nanowire Growth at Relatively Low Processing Temperature

Published online by Cambridge University Press:  21 March 2011

Joondong Kim
Affiliation:
University at Buffalo, State University of New York, Dept. of Electrical Engineering, Buffalo, NY 14260, USA
Chunhai Ji
Affiliation:
University at Buffalo, State University of New York, Dept. of Electrical Engineering, Buffalo, NY 14260, USA
Wayne A. Anderson
Affiliation:
University at Buffalo, State University of New York, Dept. of Electrical Engineering, Buffalo, NY 14260, USA
Get access

Abstract

The Metal Induced Growth (MIG) of nanowires has the potential to alter the conventional lithographic techniques to provide an easier fabrication method in nanoelectronics. Our group has studied the MIG technique to synthesize poly-silicon and nano size structures. This work gave silicon nanowires of 20∼200 nm diameter, 3∼10νm length and single crystal structure. Until now, the growing of silicon nanowires has been understood by two models. One is an oxide- assisted mechanism and the other is a metal catalyst assisted mechanism. Both cases need higher growth temperatures above 900°C. We are now proposing the repeatable growth of silicon nanowires at a low processing temperature, 550∼600°C, which is the lowest silicon nanowire growth temperature without using a gas type silicon source (silane).

This novel method to grow silicon nanowires has several advantages: (1) low processing temperature; (2) straight line growth; (3) single crystal structure and (4) repeatability. This Si nanowire growing mechanism is based on NiSi formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lu, M., Li, M.K., Kong, L.B., Guo, X.Y., Li, H.L., Chem. Phys. Lett. 374, 542 (2003).Google Scholar
2. Wang, N., Tang, Y.H., Zhang, Y.F., Lee, C.S., Bello, I., Lee, S.T., Chem. Phys. Lett. 299, 237 (1999).Google Scholar
3. Huang, Yu, Duan, Xiangfeng, Cui, Yi, Lauhon, Lincoln J., Kim, Kyoung-Ha, Lieber, Charles M., Science 294, 1313 (2001).Google Scholar
4. Zhou, G. W., Li, H., Sun, H. P., Yu, D. P., Wang, Y. Q., Huang, X. J. and Chen, L. Q., Zhang, Z., Appl. Phys.Lett. 75, 2447 (1999).Google Scholar
5. Hua, S.F., Wonga, W.Z., Liua, S.S., Wua, Y.C., Sunga, C.L., Huangb, T.Y., Solid State Comm. 125, 351 (2003).Google Scholar
6. Kim, Gi Bum, Yoo, Do-Joon, Baik, Hong Koo, Myoung, Jae-Min, Lee, Sung Man, Oh, Sang Ho and Park, Chan Gyung, J.Vac. Sci.Tech. B 21, 319 (2003).Google Scholar
7. Gambino, J. P. and Colgan, E. G., Mat.Chem.Phys. 52, 99 (1998).Google Scholar
8. Zeng, X.B., Xu, Y. Y., Zhang, S.B., Hu, Z.H., Diao, H.W., Wang, Y.Q., Kong, G.L., Liao, X.B., J. Crystal Growth 247, 13 (2003).Google Scholar
9. Westwater, J., Gosain, D. P., Tomiya, S., Usui, S., Ruda, H., J.Vac. Sci.Tech. B 15, 554 (1997).Google Scholar
10. Cui, Yi, Lauhon, Lincoln J., Gudiksen, Mark S., Appl. Phys. Lett. 78, 2214 (2001)Google Scholar
11. Morales, Alfredo M. and Lieber, Charles M., Science 279, 208 (1998).Google Scholar
12. Feng, S.Q., Yu, D.P., Zhang, H.Z., Bai, Z.G., Ding, Y., J. Crystatl Growth 209, 513 (2000).Google Scholar
13. Yan, H.F., Xing, Y.J., Hang, Q.L., Yu, D.P., Wang, Y.P., Xu, J., Xi, Z.H., Feng, S. Q., Chem. Phys. Lett. 323, 224 (2000).Google Scholar
14. Chen, Xihong, Xing, Yingjie, Xu, Jun, Xiang, Jie, Yu, Dapeng, Chem. Phys. Lett. 374, 626 (2003).Google Scholar
15. Lee, Kyung Sun, Mo, Young Hwan, Nahm, Kee Suk, Shim, Hyun Wook, Suh, Eun Kyung, Kim, Jae Ryoung, Kim, Ju Jin, Chem Phys. Lett. 384, 215 (2004).Google Scholar
16. Zhang, Y.F., Tang, Y.H., Lam, C., Wang, N., Lee, C.S., Bello, I., Lee, S.T., J. Crystal Growth 212, 115 (2000).Google Scholar
17. Tu, K. N., Ottaviani, G., Gösele, U., and Föll, H., J. Appl. Phys., 54, 758 (1983).Google Scholar
18. Guliants, E.A., Anderson, W.A., Guo, L.P., Guliants, V.V., Thin Solid Films 385, 74(2001).Google Scholar