Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T01:16:59.187Z Has data issue: false hasContentIssue false

Silicon-Based Optoelectronics

Published online by Cambridge University Press:  10 February 2011

Ch. Buchal
Affiliation:
Institut für Schicht- und lonentechnik (ISI-IT), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germanyc.buchal@fz-juelich.de, (+ 49) 24 61/61-44 31, -46 73
M. Löken
Affiliation:
Institut für Schicht- und lonentechnik (ISI-IT), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germanyc.buchal@fz-juelich.de, (+ 49) 24 61/61-44 31, -46 73
M. Siegert
Affiliation:
Institut für Schicht- und lonentechnik (ISI-IT), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germanyc.buchal@fz-juelich.de, (+ 49) 24 61/61-44 31, -46 73
Get access

Abstract

The potential of silicon-based designs for various optoelectronic functions is discussed. Sibased light detectors are the most advanced, especially in the form of metal-Si-metal (MSM) photodetectors. They use Si band to band absorption for visible light and Schottky-barrier emission for the infrared (IR). The different light sources show rapid progress, but still face challenges to reach a quantum efficiency of 10−2. In addition to the intrinsic silicon based designs, some new Si breadboard concepts are shown: especially for waveguides, modulators and all-optical amplifiers, it may be advantageous to add entirely different materials (polymers, glasses, BaTiO3 or Al2O3) onto the Si wafer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Please refer also to the other contributions to this MRS Fall 1997 symposium: “Materials and Devices for Silicon-Based Optoelectronics”, Mat. Res. Soc. Symp. Proc. 486 (1998)Google Scholar
2. Soref, R. A. “Silicon-Based Optoelectronics”, Proc. IEEE 81 (12), 1687 (1993)Google Scholar
3. Henry, C. H., Blonder, G. E., Kazarinov, R. F. “Glass Waveguides on Silicon for Hybrid Optical Packaging”, IEEE J. Light-wave Techn. 7,1530 (1989)Google Scholar
4. Reed, G. T., Rickman, A. G., Weiss, B. L., Namavar, F., Cortesi, E., Soref, R. A. “Optical Characteristics of Planar Waveguides in SIMOX Structures”, Mat. Res. Soc. Symp. Proc. 244, 387 (1992)Google Scholar
5. Schmidtchen, J., Schüppert, B., Splett, A., Petermann, K. “Low Loss Rib-Waveguides in SOI”, Mat. Res. Soc. Symp. Proc. 244, 351 (1992)Google Scholar
6. Soref, R. A., Schmidtchen, J., Petermann, K. “Large Single-Mode Rib Waveguides in GeSi- Si and Si-on-SiO2, J. Quantum Electron. 27, 1971 (1991)Google Scholar
7. Zinke, T., Fischer, U., Splett, A., Schüppert, B., Petermann, K. “Comparison of Optical Waveguide Losses in Silicon-on-Insulator”, Electron. Left. 29 (23), 2031 (1993)Google Scholar
8. Splett, A., Zinke, T., Petermann, K., Kasper, E., Kibbel, H., Herzog, H.-J., Presting, H. “Integration of Waveguides and Photodetectors in SiGe for 1.3 μm Operation”, IEEE Photonics Technol. Left. 6 (1), 59 (1994)Google Scholar
9. Voirin, G., Sixt, P., Fullin, E. “Microstructure for Waveguide-to-Photodiode Coupling in Silicon Optoelectronics”, Proc. ECIO '95, Delft 1995, 113, ISBN 90-407-1111-9Google Scholar
10. Hilleringmann, U., Adams, S., Goser, K. “A Silicon Technology for Monolithic Integration of Optical Waveguides, Photodetectors and VLSI CMOS Circuits”, Proc. ISSSE'92, Paris, 1992 Google Scholar
11. Wunderlich, S., Schmidt, J. P., Müller, J. “Integration of SiOn Waveguides and Photodiodes on Silicon Substrates”, Appl. Optics 31 (21) 1992 Google Scholar
12. Polman, A. “Erbium Implanted Thin Film Photonic Materials”, J. Appl. Phys. 82 (1), 1 (1997)Google Scholar
13. DiMaria, D. J., Kirtley, J. R., Pakulis, E. J., Dong, D. W., Kuan, T. S., Pesavento, F. L., Theis, T. N., Cutro, J. A. “Electroluminescence Studies in Silicon Dioxide Films Containing Tiny Silicon Islands”, J. Appl. Phys. 56 (2), 401 (1984)Google Scholar
14. White, C. W., Budai, J. D., Zhu, J. G., Withrow, S. P., Hembree, D. M., Henderson, D. O., Ueda, A., Tung, Y. S., Mu, R. “Nanocrystals and Quantum Dots Formed by High-Dose Ion Implantation”, Mat. Res. Soc. Symp. Proc. 396, 377 (1996)Google Scholar
15. Neufeld, E., Wang, S., Apetz, R., Buchal, Ch., Carius, R., White, C. W., Thomas, D. K. “Effect of Annealing and H2 Passivation on the Photoluminescence of Si Nanocrystals in SiO2, Thin Solid Films 294, 238 (1997)Google Scholar
16. Mutti, P., Ghislotti, G., Meda, L., Grilli, E., Guzzi, M., Zanghieri, L., Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A. “Photoluminescence Studies of Light Emission from Silicon Implanted and Annealed SiO2 Layers”, Thin Solid Films 276, 88 (1996)Google Scholar
17. Fischer, T., Petrova-Koch, V., Shcheglov, K., Brandt, M. S., Koch, F. “Continuously Tunable Photoluminescence from Si+-implanted and Thermally Annealed SiO2 Films”, Thin Solid Films 276,100 (1996)Google Scholar
18. Kobayashi, T., Endoh, T., Fukuda, H., Nomura, S., Sakai, A., Ueda, Y. “Ge Nanocrystals in SiO2 Films”, Appl. Phys. Left. 71 (9), 1195 (1997)Google Scholar
19. Shimizu-Iwayama, T., Terao, Y., Kamiya, A., Takeda, M., Nakao, S., Saitoh, K. “Visible Photoluminescence from Silicon Nanocrystals Formed in Silicon Dioxide by Ion Implantation and Thermal Processing”, Thin Solid Films 276,104 (1996)Google Scholar
20. Skorupa, W., Yankov, R. A., Tyschenko, I. E., Fröb, H., Böhme, T., Leo, K. “Room-Temperature, Short-Wavelength (400–500 nm) Photoluminescence from Silicon-Implanted Silicon Dioxide Films”, Appl. Phys. Lett 68 (17), 2410 (1996)Google Scholar
21. Skorupa, W., Yankov, R. A., Rebohle, L., Fröb, H., Böhme, T., Leo, K., Tyschenko, I. E.. Kachurin, G. A. “A Study of the Blue Photoluminescence Emission from Thermally-grown, Si+- Implanted SiO2 Films after Short-Time Annealing”, Nucl. Instr. Meth. B120, 106 (1996)Google Scholar
22. Rebohle, L., Tyschenko, I. E., Fröb, H., Leo, K., Yankov, R. A., von Borany, J., Kachurin, G. A., Skorupa, W. “Blue and Violet Photoluminescence from High-Dose Si+- and Ge+-Implanted Silicon Dioxide Layers”, Microelectr. Eng. 36, 107 (1997), Appl. Phys. Lett. 71, 2809 (1997)Google Scholar
23. Min, K. S., Shcheglov, K. V., Yang, C. M., Atwater, H. A., Brongersma, M. L., Polman, A. “The Role of Quantum-Confined Excitons vs Defects in the Visible Luminescence of SiO2 Films Containing Ge Nanocrystals”, Appl. Phys. Lett. 68 (18), 2511 (1996)Google Scholar
24. Min, K. S., Shcheglov, K. V., Yang, C. M., Atwater, H. A., Brongersma, M. L., Polman, A. “Defect-Related Versus Excitonic Visible Light Emission from Ion Beam Synthesized Si Nanocrystals in SiO2, Appl. Phys. Left. 69 (14), 2033 (1996)Google Scholar
25. Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S., Yamamoto, K. “1.54 μm Photoluminescence of Er3+ doped into SiO2 Films Containing Si Nanocrystals: Evidence for Energy Transfer from Si Nanocrystals to Er 3+, Appl. Phys. Lett. 71 (9), 1198 (1997)Google Scholar
26. Koch, F., Petrova-Koch, V. “Light from Si-Nanoparticle Systems -A Comprehensive View”, J. Non-Cryst. Sol. 198–200, 840 (1996)Google Scholar
27. Hybertsen, M. S., “Absorption and Emission of Light in Nanoscale Silicon Structures”, Phys. Rev. Lett. 72 (10), 1514 (1994)Google Scholar
28. Loni, A., Simons, A. J., Cox, T. I., Calcoft, P. D. J. and Canham, L. T. “Electroluminescent porous silicon device with an external quantum efficiency greater than 0.1% under CW operation”, Electr. Lett. 31(15), 1288 (1995)Google Scholar
29. Hirschman, K. D., Tsybeskov, L., Duftagupta, S. P., Fauchet, P. M. “Silicon-based visible light-emitting devices integrated into microelectronic circuits”, Nature 384, 338 (1996)Google Scholar
30. Apetz, R., Vescan, L., Hartmann, A., Dieker, C., Lüth, H. “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth”, Appl. Phys. Left. 66 (4), 445 (1995)Google Scholar
31. Michel, J., Benton, J. L., Ferrante, R. F., Jacobson, D. C., Eaglesham, D. J., Fitzgerald, E. A., Xie, Y.-H., Poate, J. M., Kimerling, L. C. “Impurity enhancement of the 1.54-μm Er3+ luminescence in silicon”, J. Appl. Phys. 70 (5), 2672 (1991)Google Scholar
32. Stimmer, J., Reittinger, A., Nützel, J. F., Abstreiter, G., Holzbrecher, H., Buchal, Ch. “Electroluminescence of Erbium-Oxygen-Doped Silicon Diodes Grown by Molecular Beam Epitaxy”, Appl. Phys. Lett. 68 (23), 3290 (1996)Google Scholar
33. Neufeld, E., Sticht, A., Brunner, K., Abstreiter, G., Holzbrecher, H., Bay, H., Buchal, Ch. “Influence of Germanium Content on the Photoluminescence of Erbium- and Oxygen- Doped SiGe Grown by Molecular Beam Epitaxy”, 71 (21), 3129 (1997)Google Scholar
34. Neufeld, E., Sticht, A., Brunner, K., Riedl, H., Abstreiter, G., Holzbrecher, H., Bay, H. “Photoand Electroluminescence Characterization of Erbium Doped SiGe”, submitted to J. Vac. Sci. Techn. BGoogle Scholar
35. Coffa, S., Franzo, G., Priolo, F. “High Efficiency and Fast Modulation of Er-Doped Light Emitting Si Diodes”, Appl. Phys. Lett 69 (14), 2077 (1996)Google Scholar
36. Franzo, G., Coffa, S., Priolo, F., Spinella, C. “Mechanism and Performance of Forward and Reverse Bias Electroluminescence at 1.54 μm from Er-Doped Si Diodes”, J. Appl. Phys. 81 (5), 1 (1997)Google Scholar
37. Palm, J., Gan, F., Zheng, B., Michel, J., Kimerling, L. C. “Electroluminescence of Erbium Doped Silicon”, Phys. Rev. B54, 17603 (1996)Google Scholar
38. Lombardo, S., Campisano, S. U., van den Hoven, G. N., Polman, A. “Erbium in Oxygen-Doped Silicon: Electroluminescence”, J. Appl. Phys. 77 (12), 6504 (1995)Google Scholar
39. Wang, S., Eckau, A., Carius, R., Buchal, Ch. “Hot Electron Impact Excitation Cross-Section of Er3+ and Electroluminescence from Erbium-Implanted Silicon MOS Tunnel Diodes”, Appl. Phys. Lett., 71, 2824 (1997)Google Scholar
40. Leong, D., Harry, M., Reeson, K. J., Homewood, K. P. “A Silicon/Iron-Disilicide Light-Emitting Diode Operating at a Wavelength of 1.5 μm”, Nature 387, 686 (1997)Google Scholar
41. Walker, F. J., McKee, R. A., Yen, H.-W., Zelmon, D. E. “Optical Clarity and Waveguide Performance of Thin Film Perovskites on MgO”, Appl. Phys. Left. 65, 1495 (1994)Google Scholar
42. Gill, D. M., Conrad, C. W., Ford, G., Wessels, B. W., Ho, S. T. “Thin-Film Channel Waveguide Electro-Optic Modulator in Epitaxial BaTiO3, Appl. Phys. Left. 71 (13), 1783 (1997)Google Scholar
43. Beckers, L., Schubert, J., Zander, W., Ziesmann, J., Eckau, A., Leinenbach, P., Buchal, Ch. “Structural and Optical Characterization of Epitaxial Waveguiding BaTiO3 Thin Films on MgO”, J. Appl. Phys. (1998)Google Scholar
44. Soref, R. A., Bennett, B. R. “Electrooptical Effects in Silicon”, J. of Quantum Electr. QE-23 (1), 123 (1987)Google Scholar
45. Fischer, U., Schüppert, B., Petermann, K. “Integrated Optical Switches in Silicon Based on SiGe-Waveguides”, IEEE Photonics Tech. Left. 5 (7), 785 (1993)Google Scholar
46. Alexandrou, S., Wang, C.-C., Hsiang, T. Y., Liu, M. Y., Chou, S. Y. “A 75 GHz Silicon Metal-Semiconductor-Metal Schottky Photodiode”, Appl. Phys. Left. 62 (20), 2507 (1993)Google Scholar
47. Wang, C.-C., Alexandrou, S., Jacobs-Perkins, D., Hsiang, T. Y. “Comparison of the Picosecond Characteristics of Silicon and Silicon-on-Sapphire Metal-Semiconductor-Metal Photodiodes”, Appl. Phys. Left. 64 (26), 3578 (1994)Google Scholar
48. Liu, M. Y., Chen, E., Chou, S. Y. “140-GHz Metal-Semiconductor-Metal Photodetectors on Silicon-on-Insulator Substrate with a scaled Active Layer”, Appl. Phys. Left. 65 (7), 887 (1994)Google Scholar
49. Levine, B. F., Wynn, J. D., Klemens, F. P., Sarusi, G. “1 Gb/s Si High Quantum Efficiency Monolithically Integrable λ = 0.88 μm Detector”, Appl. Phys. Left. 66 (22), 2984 (1995)Google Scholar
50. Ho, J. Y. L., Wong, K. S. “High-Speed and High-Sensitivity Silicon-on-Insulator Metal- Semiconductor-Metal Photodetector with Trench Structure”, Appl. Phys. Lett. 69 (1), 16 (1996)Google Scholar
51. Chen, E., Chou, S. Y. “High-Efficiency and High-Speed Silicon Metal-Semiconductor-Metal Photodetectors Operating in the Infrared”, Appl. Phys. Lett. 70 (6), 753 (1997)Google Scholar
52. Dutta, N. K., Nichols, D. T., Jacobson, D. C., Livescu, G. “Fabrication and Performance Characteristics of High-Speed Ion-Implanted Si Metal-Semiconductor-Metal Photodetector”, Appl. Optics 36 (6), 1180 (1997)Google Scholar
53. RIders, F., Kim, J., Hacke, M., Mesters, S., Buchal, Ch., Mantl, S. “Vertical MSM Photodiodes in Silicon Based on Epitaxial Si/CoSi2/Si”, Thin Solid Films 294, 351 (1997)Google Scholar
54. Mantl, S. “Ion Beam Synthesis of Epitaxial Silicides: Fabrication, Characterization and Applications”, Mat. Sci. Rep. 8, 1 (1992)Google Scholar
55. Mantl, S. “Molecular Beam Allotaxy: A New Approach to Epitaxial Heterostructures”, J. Phys. D: Appl. Phys. 30, 1 (1997)Google Scholar
56. Sagnes, I., Campidelli, Y., Vincent, G., Badoz, P. A. “Tunable Infrared Photoemission Sensor on Si Using Epitaxial ErSi2/Si Heterostructures”, Mat. Sci. and Eng. B21, 312 (1993)Google Scholar
57. Sagnes, I., Campidelli, Y., Chevalier, F., Bodnar, S., Renard, C., Badoz, P. A. “Tunable Infrared Detection Using Epitaxial Silicide/Silicon Heterostructures”, Mat. Res. Soc. Symp. Proc. 320, 65 (1994)Google Scholar
58. Schwarz, C., von Känel, H. “Tunable Infrared Detector with Epitaxial Silicide/Silicon Heterostructures”, J. Appl. Phys. 79 (11), 8798 (1996)Google Scholar
59. Siegert, M., Löken, M., Glingener, Ch., Buchal, Ch. “Optical Coupling Between a Polymeric Waveguide and a MSM-Si-Photodiode”, submitted to Electr. Left.Google Scholar
60. Van, Y. C., Faber, A. J., de Waal, H., Kik, P. G., Polman, A. “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm”, Appl. Phys. Left. 71 (20), 2922 (1997)Google Scholar