Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T14:08:58.430Z Has data issue: false hasContentIssue false

Simulated Thermal Effects on Structural and Electronic Properties of GaN

Published online by Cambridge University Press:  21 February 2011

S. Serra
Affiliation:
Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica dell'Universita' di Milano, via Celoria 16, I-20133 Milano (Italy)
L. Miglio
Affiliation:
Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica dell'Universita' di Milano, via Celoria 16, I-20133 Milano (Italy)
Vincenzo Fiorentini
Affiliation:
Istituto Nazionale di Fisica della Materia, Dipartimento di Scienze Fisiche dell' Universita' di Cagliari, via Ospedale 72, I-09124 Cagliari, (Italy)
Get access

Abstract

We present preliminary results of tight binding molecular dynamics (TBMD) simulations concerning the thermal effects on the structural and electronic properties of GaN. We derived a semiempirical tight binding (TB) potential which is able to reproduce the band structure and the phase diagram of GaN for zincblende, wurtzite and rock-salt phases. We have found that even at few hundreds K above the experimental melting temperature the local ordering is fairly well conserved, with the fraction of wrong bonds quite low. Defects states appear in the gap at approximately 2.3 eV in agreement to the experimental indication for annealed films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nakamura, S., Mukai, T., Senoh, M., J.Appl.Phys. 71, 5543, (1992)Google Scholar
2 Lei, T., Fanciulli, M., Molnar, RJ., Moustakas, T.D., and Graham, RJ., J. Scanlon, Appl. Phys.Lett. 59, 944, (1991).Google Scholar
3 Nakamura, S. et al., Appl. Phys. Lett. 64, 13, (1994)Google Scholar
4 Davis, R.F., Proc. IEEE 79, 703, (1991)Google Scholar
5 Slater, J.C., and Koster, G.F., Phys. Rev. 94, 1498, (1954)Google Scholar
6 Sawada, S., Vacuum 1, 612 (1992)Google Scholar
7 Fiorentini, V., Methfessel, M., and Scheffler, M., Phys. Rev. B 47, 13353 (1993) V.Fiorentini et al, in “The Physics of Semiconductors”, D.J. Lockwood ed. (World Scientific, Singapore 1995), p. 137; A.Satta et al, these ProceedingsGoogle Scholar
8 Neugebauer, J. and Van de Walle, C.G., Phys. Rev B 50, 8067 (1994)Google Scholar
9 Jenkins, D.W. and Dow, J. D., Phys. Rev. B 39, 3317, (1989)Google Scholar
10 Christensen, N.E., Gorczyca, I., Phys. Rev. B 50, 4397, (1994)Google Scholar
11 Molteni, C., Colombo, L., Miglio, L., J. Phys.: Condens. Matter 6, 5255, (1994)Google Scholar
12 Mailhiot, C., Yang, L.H., McMahan, A.K., Phys. Rev. B 46, 14419, (1992)Google Scholar
13 Lin, M.E., Sverdlov, B.N., Morkoc, M.H., Appl.Phys.Lett. 63, 3625, (1993)Google Scholar