Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T14:16:32.324Z Has data issue: false hasContentIssue false

Simulation by classical molecular dynamics of the influence of radiation effects on the fracture behavior of simplified nuclear glasses

Published online by Cambridge University Press:  23 March 2012

Le-Hai Kieu
Affiliation:
Service d’Études et Comportement des Matériaux de Conditionnement, DEN/DTCD/SECM, CEAEA Marcoule, BP 17171, 30207 Bagnols sur Cèze, France
Jean-Marc Delaye
Affiliation:
Service d’Études et Comportement des Matériaux de Conditionnement, DEN/DTCD/SECM, CEAEA Marcoule, BP 17171, 30207 Bagnols sur Cèze, France
Claude Stolz
Affiliation:
Laboratoire de Mécanique des Solides, CNRS UMR7649, Ecole Polytechnique, 91128 Palaiseau, France
Get access

Abstract

Classical molecular dynamics simulations were used to compare the fracture behavior of pristine and disordered specimens of a simplified nuclear glass. The disordered specimen is prepared in order to mimic the effects of accumulating displacement cascades. It is characterized by a decreasing Boron coordination and an increasing Na concentration in a modifying role. We observe an enhancement of the plasticity of the disordered glass and a decrease of the elastic limit, resulting in greater fracture toughness. The simulation findings are consistent with experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.-M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., Weinberg, M.C., J. Mater. Res. 12, 1946 (1997).10.1557/JMR.1997.0266Google Scholar
2. Peuget, S., Noël, P-Y., Loubet, J-L., Pavan, S, Nivet, P., Chenet, A., Nucl. Instr. and Meth. B 246, 379 (2006).10.1016/j.nimb.2005.12.053Google Scholar
3. Peuget, S., Cachia, J-N., Jégou, C., Deschanels, X., Roudil, D., Broudic, V., Delaye, J.-M., Bart, J-M., J. Nucl. Mater. 354, 1 (2006).10.1016/j.jnucmat.2006.01.021Google Scholar
4. Delaye, J.-M., Louis-Achille, V., Ghaleb, D., J. Non-Cryst. Solids 210, 232 (1997).10.1016/S0022-3093(96)00604-7Google Scholar
5. Delaye, J.-M., Peuget, S., Bureau, G., Calas, G., J. Non-Cryst. Solids 357, 2763 (2011).10.1016/j.jnoncrysol.2011.02.026Google Scholar
6. Marples, J.A.C., Nucl. Instr. And Meth. B 32, 480 (1988).10.1016/0168-583X(88)90258-3Google Scholar
7. de Bonfils, J., Peuget, S., Panczer, G., de Ligny, D., Henry, S., Noël, P-Y., Chenet, A., Champagnon, B., J. Non-Cryst. Solids 356, 388 (2010).10.1016/j.jnoncrysol.2009.11.030Google Scholar
8. Deladerriere, N., Delaye, J.-M., Augereau, F., Despaux, G., Peuget, S., J. Nucl. Mater. 375, 120 (2008).10.1016/j.jnucmat.2007.11.002Google Scholar
9. Kieu, L.-H., Delaye, J.-M., Cormier, L., Stolz, C., J. Non-Cryst. Solids 357, 3313 (2011).10.1016/j.jnoncrysol.2011.05.024Google Scholar
10. Ito, S., Taniguchi, T., J. Non-Cryst. Solids 349, 173 (2004).10.1016/j.jnoncrysol.2004.08.180Google Scholar
11. Muralidharan, K., Simmons, J.H., Deymier, P.A., Runge, K., J. Non-Cryst. Solids 351, 1532 (2005).10.1016/j.jnoncrysol.2005.03.026Google Scholar
12. Nomura, K.-i., Chen, Y-C., Weiqiang, W., Kalia, R.K., Nakano, A., Vashishta, P., Yang, L.H., J. Phys. D: Appl. Phys. 42, 214011 (2009).10.1088/0022-3727/42/21/214011Google Scholar
13. Rountree, C.L., Bonamy, D., Dalmas, D., Prades, S., Kalia, R.K., Guillot, C., Bouchaud, E., Phys. Chem. Glasses: Eur. J. Glass. Sci.. technol. B, 51, 127 (2010).Google Scholar
14. Zimmerman, J.A., Bammann, D.J., Gao, H., Int. J. Solids Struct. 46, 238 (2009).10.1016/j.ijsolstr.2008.08.036Google Scholar
15. Zimmerman, J.A., Webb, E.B. III, Hoyt, J.J., Jones, R.E., Klein, P.A., Bammann, D.J., Modelling Simul. Mater. Sci. Eng. 12, S319 (2004).10.1088/0965-0393/12/4/S03Google Scholar