Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T06:54:37.807Z Has data issue: false hasContentIssue false

Simulation of 3D Films Deposited by Glancing Angle Deposition Using 3D-Films

Published online by Cambridge University Press:  10 February 2011

T. Smy
Affiliation:
Department of Electronics, Carleton University, Ottawa, ON, Canada KIS 5B6, tjs@doe.carleton.ca
D. Vick
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta Edmonton, AB, Canada T6G 2G7
M. J. Brett
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta Edmonton, AB, Canada T6G 2G7
S. K. Dew
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta Edmonton, AB, Canada T6G 2G7
A. T. Wu
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta Edmonton, AB, Canada T6G 2G7
J.C. Sit
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta Edmonton, AB, Canada T6G 2G7
K. D. Harris
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta Edmonton, AB, Canada T6G 2G7
Get access

Abstract

A new fully three dimensional (3D) ballistic deposition simulator 3D-FILMS has been developed for the modeling of thin film deposition and structure. The simulator may be implemented using the memory resources available to workstations. In order to illustrate the capabilities of 3D-FILMS, we apply it to the growth of engineered porous thin films produced by the technique of GLancing Angle Deposition (GLAD).

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Thin Films: Modeling of Film Deposition for Microelectronic Applications, edited by Rossnagel, S., Academic Press (1996).Google Scholar
[2] Brett, M. J., Dew, S. K., and Smy, T., in reference 1, chapter 1.Google Scholar
[3] Huang, H., Gilmer, G. H., and Rubia, T. Diaz della, J. Appl. Phys. 84, 3636 (1998).10.1063/1.368539Google Scholar
[4] Levine, S. W., Engstrom, J. R., and Clancy, P., Surface Science 401, 112 (1998).10.1016/S0039-6028(97)00904-7Google Scholar
[5] Tretiatchenko, C. G., Physica C 199, 7 (1992).10.1016/0921-4534(92)90533-IGoogle Scholar
[6] Robbie, K. and Brett, M. J., J. Vac. Sci. Technol. A 15, 1460 (1997).10.1116/1.580562Google Scholar
[7] Robbie, K., Friedrich, L. J., Dew, S. K., Smy, T., and Brett, M. J., J. Vac. Sci. Technol. A 13, 1032 (1995).10.1116/1.579579Google Scholar
[8] Robbie, K., Brett, M. J., and Lakhtakia, A., Nature 384, 616 (1996).10.1038/384616a0Google Scholar
[9] Messier, R., Gehrke, T., Frankel, C., Venugopal, V. C., Otano, W., and Lakhtakia, A., J. Vac. Sci. Technol. A 15, 2148 (1997).10.1116/1.580621Google Scholar
[10] Lui, F., Umlor, M. T., Shen, L., Weston, J., Eads, W., Barnard, J. A., and Mankey, G. J., J. Appl. Phys. 85, 5486 (1999).Google Scholar
[11] Vick, D., Tsui, Y.Y., Brett, M.J., and Fedosejevs, R., Thin Solid Films 350, 49 (1999).10.1016/S0040-6090(99)00274-6Google Scholar
[12] Robbie, K., Sit, J. C., and Brett, M. J., J. Vac. Sci. Technol. B 16, 1115 (1998).10.1116/1.590019Google Scholar
[13] Sit, J.C, Broer, D.J., and Brett, M. J., Liquid Crystals 27, 387 (2000).10.1080/026782900202840Google Scholar
[14] Wu, A. T., Seto, M., Brett, M. J., Sensors and Materials 11, 493 (1999).Google Scholar