Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T09:16:27.725Z Has data issue: false hasContentIssue false

Simulation of a Simplified Design for a Nanoscale Metal-Oxide Field Effect Transistor

Published online by Cambridge University Press:  10 February 2011

D. M. Newns
Affiliation:
IBM T. J. Watson Research Center, P.O.B. 218 Yorktown Heights, NY 10598
W. M. Donath
Affiliation:
IBM T. J. Watson Research Center, P.O.B. 218 Yorktown Heights, NY 10598
P.C. Pattnaik
Affiliation:
IBM T. J. Watson Research Center, P.O.B. 218 Yorktown Heights, NY 10598
Get access

Abstract

We describe simulations on a simplified design for a metal-oxide nanoscale Field Effect Transistor (FET). The device features an oxide channel with a high dielectric constant ferroelectric as the gate insulator. In the present model, the gate and source/drain electrodes are unconventionally placed on opposite sides of the channel. Simulations are quantum mechanical and are based on a simplified transport model. Results on a 10 nm. channel device show adequate conductance and ON/OFF ratio, while simulation of a ring oscillator yields an estimated device switching time of 300 fs..

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lerner, E.J., IBM Research (3), p. 10 (1998); S. Thompson, P. Packan, and M. Bohr, Intel Technology Journal, Q3 1998, p.1.Google Scholar
[2] Zhou, C., Newns, D.M., Misewich, J.A., and Pattnaik, P.C., Appl. Phys. Lett. 70, 598 (1997); D.M. Newns, J. Misewich and C. Zhou, USA Patent disclosure #: Y0895-0318, 1996.Google Scholar
[3] Levy, A., Falck, J.P., Kastner, M.A., Gallagher, W.J., Gupta, A., and Kleinsasser, A.W., J. Appl. Phys. 69, 4439 (1991); A. Levy, J.P. Falck, M.A. Kastner, and R.J. Birgeneau, Phys. Rev. B51, 648 (1995); S. Hontsu, H. Tabata, N. Nakamori, J. Ishii, and T. Kawai, Jpn. J. Appl. Phys. 35, L774 (1996); S.B. Ogale, V. Talyansky, C.H. Chen, R. Ramesh, R.L. Greene, and T. Venkatesan, Phys. Rev. Lett. 77, 1159 (1996).Google Scholar
[4] Newns, D.M. et al. , Appl. Phys. Lett. 73, 780 (1998); D.M. Newns et al., ‘The Mott Transition Field Effect Transistor: a Nanodevice?’, Proceedings of the 5th International Workshop on Oxide Electronics, U. Maryland (1998), J. Electroceramics (Kluwer), in press; Jum & Alex MRS 1998.Google Scholar
[5] Doderer, T. et al. , ‘Charge transport in the normal state of electron or hole doped YBa2Cu3O7-x’, preprint.Google Scholar
[6] New Jim & Alex paperGoogle Scholar
[7] Izuha, M., Abe, K., and Fukushima, N., Jpn. J. Appl. Phys. 36, 5866 (1997).Google Scholar
[8] Newns, D.M., Donath, W. and Pattnaik, P.C., submitted to Applied Physics Letters.Google Scholar
[9] Takagi, H. et al., Phys. Rev. Lett. 69, 2975 (1992).Google Scholar
[10] Ito, T., Takenaka, K., and Uchida, S., Phys. Rev. Lett. 25, 3995 (1993).Google Scholar