Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T07:18:47.869Z Has data issue: false hasContentIssue false

Simulation of chirally-induced excitonic optical effects in biscyanine dye with shiff base (optical and molecular structure simulations)

Published online by Cambridge University Press:  15 March 2011

C. Andraud
Affiliation:
Ecole Normale Superieure de Lyon, Lyon, FRANCE
K.J. Plucinski
Affiliation:
Military University of Technology, Warsaw, POLAND
I.V. Kityk
Affiliation:
Institute of Physics, WSP Czestochowa, POLAND
Get access

Abstract

For the first time simulations of chirally-induced excitons have been carried out, using molecular dynamic simulations and self-consistent quantum chemical calculations within the RHF [Restricted Hartree-Fock ] and DFT [Density Functional Theory] approaches. We found that the DFT approach gave substantially better agreement than the RHF. Comparison of theoretical and experimental results for biscyanine dye with a Shiff base showed a sufficiently good level of agreement.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Condon, E.U., Rev.Mod.Phys. 9, 432 (1937); E.U. Condon, W. Altar, and H. Eyring, J.Chem.Phys. 5, 753 (1937).Google Scholar
2. Mason, S.F., Molecular Optical Activity and the Chiral Discriminations (Cambridge University Press, Cambridge, England, 1982, p.34.Google Scholar
3. Tinoco, I. and Woody, R.W., J.Chem.Phys. 40, 160 (1964).Google Scholar
4. Harada, N., and Nakanishi, K., Circular Dichroic Spectroscopy: Exciton Coupling in Organic Stereochemistry, University Science Books, Mill Valey, CA, 1983.Google Scholar
5. Byers, J.P., Yee, H.I., and Hicks, J.M., J.Chem.Phys. 101, 6233 (1994).Google Scholar
6. Shanee-Klein, M.C., Hache, F., Roy, A., Flytzanis, C., and Payraste, C., J.Chem.Phys. 108, 9436 (1998).Google Scholar
7. Dawydow, A.S., Theory of Molecular Excitons, McGraw-Hill, New York, 1962.Google Scholar
8. Nakanishi, K., Kuroyonagi, M., Nambu, H., Oltz, E.M., Takeda, R., Verdine, G.L., and Zask, A., Pure Appl.Chem. 56, 10301048 (1984).Google Scholar
9. Wiesler, W.T., Pure Appl. Chem. 67, 11931200 (1989).Google Scholar
10. Kuhn, W., Trans.Faraday Soc. 26, 293 (1930); J.G. Kirkwood, J.Chem.Soc. 5, 479 (1937).Google Scholar
11. Brown, A., Kemp, C.M., and Mason, S.F., J.Chem.Soc. A, N 5, 751755 (1971).Google Scholar
12. Berova, N., and Nakanishi, K., In: Circular Dichroism: Principles and Applications, Second Edition, Ed. by Berova, N., Nakanishi, K., and Woody, R.W., John Wiley & Sons, 2000, p. 337.Google Scholar
13. Becke, A.D., Phys.Rev. A38, 3098 (1988).Google Scholar
14. Lee, C., Yang, W., and Parr, C.G., Phys. Rev. B37, 785 (1988).Google Scholar
15. Kisel, A., Optical chiral absorption, Moscow, 1987, p.243.Google Scholar
16. Skworcow, P., Rus.J.Anal.Chem. 12, 254 (1984).Google Scholar
17. Sahraoui, B., Kityk, I.V., Phu, X. Nguyen, Gorgues, A., and Pudomme, P., Phys.Rev. B59, 9229 (1999).Google Scholar
18. Reideling, T.A., In: Circular Dychroism, Interpretation and Application, Nakaishi, R., Berova, N.D., and Woody, R.W.; eds, VCH Publishers, NY, 1994, pp. 497521.Google Scholar