Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T21:15:53.229Z Has data issue: false hasContentIssue false

Simulation of Realistic Core-shell Silicon Nanowires

Published online by Cambridge University Press:  01 February 2011

Rana Biswas
Affiliation:
biswasr@iastate.edu, Iowa State University, Physics, ECpE, Microelectronics Res. Ctr. & Ames Lab, Pammel Drive, Ames, IA, 50014, United States, 515-294-6987, 515-294-0689
Bicai Pan
Affiliation:
biswasr@iastate.edu, Iowa State University, Physics, ECpE, Microelectronics Res. Ctr. & Ames Lab, Pammel Drive, Ames, IA, 50014, United States, 515-294-6987, 515-294-0689
Get access

Abstract

We have developed an efficient scheme for simulating silicon nanowires with crystalline cores and amorphous sheaths, using molecular dynamics. By starting with a crystalline nanowire and performing high temperature anneal an amorphous outer sheath can be grown with controlled thickness on the nanowire. Simulations for [001] nanowires with diameters of 12 nm find low energy facets between the amorphous and crystalline layers. Simulations for [110] nanowires find weak faceting and an inhomogeneous amorphous-crystalline boundary.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Semiconductor Nanowires, Materials Research Society Bulletin, Volume 30, no. 2, February 2005.Google Scholar
2. Yang, P., The Chemistry and Physics of Semiconductor Nanowire, Materials Research Society Bulletin, 30, No.2, page 85, February 2005.Google Scholar
3. Cui, Y., Lauhon, L., Gudiksen, M., Wang, J. and Lieber, C. M., Appl. Phys. Lett. 78, 2214 (2001).Google Scholar
4. Ma, D., Lee, C.S., Au, F., Tong, S., Lee, S. T., Science 299, 1874 (2003).Google Scholar
5. Lew, K., Pan, L., Bogart, T. E., Dilts, S. M., Dickey, E. C., Redwing, J. M., Wang, Y., Cabassi, M., Mayer, T. S., Novak, S. W., Appl. Phys. Lett. 85, 3101 (2004).Google Scholar
6. Rurali, R. and Lorente, N., Phys. Rev. Lett. 94, 026805 (2005).Google Scholar
7. Barnett, R. N. and Landman, U., Phys. Rev. B 44, 3326 (1991).Google Scholar
8. Hansen, U. and Vogl, P., Phys. Rev. B 57, 13295 (1998).Google Scholar
9. Pan, B.C. and Biswas, R., J. Appl. Physics. 96, 6247 (2004).Google Scholar
10. Pan, B.C. and Biswas, R., J. Non-Crystalline Solids 333, 44 (2004).Google Scholar
11.The melting temperature Tm is high (~3200K) in this model and we chose the temperature T~2800 K.Google Scholar
12. Biswas, R., Pan, B.C., and Selvaraj, V., MRS. Symp. Proc. 862, 133 (2005).Google Scholar
13. Kayes, B.M., Atwater, H., Lewis, N.S., J. Appl. Physics 97, 114302 (2005).Google Scholar