Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T00:26:22.292Z Has data issue: false hasContentIssue false

Simulation of Vacancy Cluster Formation and Binding Energies in Single Crystal Germanium

Published online by Cambridge University Press:  21 April 2011

Piotr Spiewak
Affiliation:
Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw, 02-507, Poland Umicore, Ludwiki 4, Warsaw, 01-226, Poland
Krzysztof Jan Kurzydlowski
Affiliation:
Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw, 02-507, Poland
Jan Vanhellemont
Affiliation:
Department of Solid State Sciences, Ghent University, Krijgslaan 281 S1, Ghent, B-9000, Belgium
Piotr Wabinski
Affiliation:
Umicore, Ludwiki 4, Warsaw, 01-226, Poland
Krzysztof Mlynarczyk
Affiliation:
Umicore, Ludwiki 4, Warsaw, 01-226, Poland
Igor Romandic
Affiliation:
Umicore EOM, Watertorenstraat 33, Olen, B-2250, Belgium
Get access

Abstract

Results are presented of the simulation of the properties of vacancy clusters in single crystal germanium. Classical molecular dynamics calculations based on a Stillinger and Weber potential were used in a theoretical investigation of different growth patterns of vacancy clusters Vi . The formation and binding energies of vacancy clusters have been studied in the range 1i35. The energetically favourable growth mode and an estimate of the effective surface energy was determined for a vacancy clusters containing up to 35 vacancies

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vanhellemont, J., Śpiewak, P., Sueoka, K., J. Appl. Phys. 101, 036103 (2007)Google Scholar
2. Śpiewak, P., Muzyk, M., Kurzydłowski, K. J., Vanhellemont, J., Wabiński, P., Młynarczyk, K. and Romandic, I., J. Crystal Growth, (2007) (in press).Google Scholar
3. Roth, J., “IMD – A Molecular Dynamics Program and Applications”, Proc. of the Workshop on Molecular Dynamics on Parallel Computers, ed. Esser, R., Grassberger, P., Grotendorst, J., Lawerenz, M. (World Scientific, Singapore 2000) p. 83.Google Scholar
4. http://www.itap.physik.uni-stuttgart.de/~imd/index.htmlGoogle Scholar
5. Stillinger, F.H., Weber, T.A., Phys. Rev. B 31, 5262 (1985).Google Scholar
6. Wang, Z.Q., Stroud, D., Phys. Rev. B 38, 1384 (1988).Google Scholar
7. Hoover, W.G., Phys. Rev A 31, 1695 (1985).Google Scholar
8. Hoover, W.G., Phys. Rev A 34, 2499 (1986).Google Scholar
9. Prasad, M., Sinno, T., Appl. Phys. Lett. 80, 1951 (2002).Google Scholar
10. Prasad, M., Sinno, T., Phys. Rev. B 68, 045206 (2003).Google Scholar
11. , Bongiorno, Colombo, L., Rubia, T. Diaz de la, Europhys. Lett. 43, 4177 (1998).Google Scholar
12. Veen, Van, Schut, H., Rivera, A., Fedorov, A.V., Mat. Res. Soc. Symp. Proc. 398, 155 (1996).Google Scholar
13. Gilmer, G. H., Rubia, T. Diaz de la, Stock, D. M., Jaraiz, M., Nucl. Instrum. Methods Phys. Res. B 102, 247 (1995).Google Scholar
14. Sinno, T., Brown, R.A., J. Electrochem. Soc. 146, 2300 (1999).Google Scholar
15. Kulkarni, M. S., Voronkov, V., Falster, R., J. Electrochem. Soc. 151, G663 (2004).Google Scholar
16. Chadi, D. J. and Chang, K. J., Phys. Rev. B 38, 1523 (1988).Google Scholar
17. Janke, C., Jones, R., Coutinho, J., Oberg, S., Briddon, P. R., Mater. Sci. Semicond. Process 9, 484 (2006).Google Scholar
18. Sueoka, K. and Vanhellemont, J., Mater. Sci. Semicond. Process 9, 494 (2006).Google Scholar
19. Wang, C.Z., Chan, C.T., Ho, K.M., Phys. Rev. Lett. 66, 189 (1991).Google Scholar
20. Öğüt, S., Kim, H., Chelikowsky, J.R., Phys. Rev. B 56, R11353 (1997).Google Scholar
21. Silva, Antônio J.R. da, Baierle, R.J., Motta, R., Fazzio, A., Physica B, 302 (2001).Google Scholar