Article contents
Simulations of CVD Diamond Film Growth Using a Simplified Monte Carlo Model
Published online by Cambridge University Press: 31 January 2011
Abstract
A simple 1-dimensional Monte Carlo (KMC) model has been developed to simulate the chemical vapour deposition (CVD) of a diamond (100) surface. The model considers adsorption, etching/desorption, lattice incorporation, and surface migration along and across the dimer rows. The reaction probabilities for these processes are re-evaluated in detail and their effects upon the predicted growth rates and morphology are described. We find that for standard CVD diamond conditions, etching of carbon species from the growing surface is negligible. Surface migration occurs rapidly, but is mostly limited to CH2 species oscillating rapidly back and forth between two adjacent radical sites. Despite the average number of migration hops being in the thousands, the average diffusion length for a surface species is <2 sites.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2010
References
- 1
- Cited by