Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T07:01:47.087Z Has data issue: false hasContentIssue false

Simulations of CVD Diamond Film Growth Using a Simplified Monte Carlo Model

Published online by Cambridge University Press:  31 January 2011

Paul William May
Affiliation:
paul.may@bris.ac.uk, University of Bristol, School of Chemistry, Bristol, United Kingdom
Jeremy N. Harvey
Affiliation:
Jeremy.Harvey@bristol.ac.uk, University of Bristol, School of Chemistry, Bristol, United Kingdom
Neil L. Allan
Affiliation:
n.l.allan@bris.ac.uk, University of Bristol, School of Chemistry, Bristol, United Kingdom
James C. Richley
Affiliation:
J.Richley@bris.ac.uk, University of Bristol, School of Chemistry, Bristol, United Kingdom
Yuri A. Mankelevich
Affiliation:
ymankelevich@mics.msu.su, Moscow State University, Skobel’tsyn Institute of Nuclear Physics, Moscow, Vorob’evy gory, Russian Federation
Get access

Abstract

A simple 1-dimensional Monte Carlo (KMC) model has been developed to simulate the chemical vapour deposition (CVD) of a diamond (100) surface. The model considers adsorption, etching/desorption, lattice incorporation, and surface migration along and across the dimer rows. The reaction probabilities for these processes are re-evaluated in detail and their effects upon the predicted growth rates and morphology are described. We find that for standard CVD diamond conditions, etching of carbon species from the growing surface is negligible. Surface migration occurs rapidly, but is mostly limited to CH2 species oscillating rapidly back and forth between two adjacent radical sites. Despite the average number of migration hops being in the thousands, the average diffusion length for a surface species is <2 sites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 May, P.W., Science 319, 1490 (2008).Google Scholar
2 May, P.W., Phil. Trans. Roy. Soc. Lond. A 358, 473 (2000).Google Scholar
3 Goodwin, D.G. and Butler, J.E., in: Prelas, M.A., Popovici, G., , L. K., Bigelow, , Eds., Handbook of Industrial Diamonds and Diamond Films (Marcel Dekker, New York, 1998).Google Scholar
4 Harris, S. J., Appl. Phys. Lett. 56, 2298 (1990).Google Scholar
5 Butler, J.E., Woodin, R.L., Brown, L.M., Fallon, P., Phil. Trans. Roy. Soc: Phys. Sci. and Eng. 342, 209 (1993).Google Scholar
6 May, P.W., Mankelevich, Yu.A., J. Phys. Chem. C 112, 12432 (2008).Google Scholar
7 May, P.W., Allan, N.L., Richley, J.C., Ashfold, M.N.R., Mankelevich, Yu.A., J. Phys. Cond. Matter 21, 364203 (2009).Google Scholar
8 May, P.W., Allan, N.L., Ashfold, M.N.R., Richley, J.C., Mankelevich, Yu.A., Diamond Relat. Mater. (2010), in press (doi: 10.1016/j.diamond.2009.10.030).Google Scholar
9 Skokov, S., Weiner, B., Frenklach, M., J. Phys. Chem. 98, 7073 (1994).Google Scholar
10 Cheesman, A., Harvey, J.N., Ashfold, M.N.R., J. Phys. Chem. A, 112, 11436 (2008).Google Scholar
11 Richley, J.C., Harvey, J.N. and Ashfold, M.N.R., J. Phys. Chem. A 113, 11416 (2009).Google Scholar
12 Larsson, K., Carlsson, J.-O., phys. stat. sol. (a) 186, 319 (2001).Google Scholar
13 Richley, J.C., Harvey, J.N., Ashfold, M.N.R., Poster J17.32, Proc. MRS Fall Meeting 2009.Google Scholar
14 Bortz, A.B., Kalos, M.H., Lebowitz, J.L., J. Comp. Phys. 17, 10 (1975).Google Scholar
15 Mankelevich, Yu.A., Ashfold, M.N.R., Ma, J., J. Appl. Phys. 104, 113304 (2008).Google Scholar
16 Regemorter, T. Van, Larsson, K., J. Phys. Chem. A 112, 5429 (2008).Google Scholar
17 Klippenstein, S.J., Georgievskii, Y., Harding, L.B., Phys. Chem. Chem. Phys. 8, 1133 (2006).Google Scholar
18 Rawles, R.E., Komarov, S.F., Gat, R., Morris, W.G., Hudson, J.B., D'Evelyn, M.P., Diamond Relat. Mater. 6, 791 (1997).Google Scholar
19 Stallcup, R. E. II , Perez, J.M., Phys. Rev. Letts. 86, 3368 (2001).Google Scholar
20 Netto, A., Frenklach, M., Diamond Relat. Mater. 14, 1630 (2005).Google Scholar
21 Frenklach, M., Skokov, S., J. Phys. Chem. B 101, 3025 (1997).Google Scholar
22 Donnelly, C.M., McCullough, R.W., Geddes, J., Diamond Relat. Mater. 6, 787 (1997).Google Scholar
23 Battaile, C.C., Srolovitz, D.J., Annu. Rev. Mater. Res. 32, 297 (2002).Google Scholar