Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T07:02:19.789Z Has data issue: false hasContentIssue false

Simulations of Passive Matrix Polymer Image Sensors

Published online by Cambridge University Press:  10 February 2011

D. Braun
Affiliation:
EE Department, Cal Poly State University, San Luis Obispo, CA 93407, dbraun@calpoly.edu
G. Yu
Affiliation:
UNIAX Corporation, Santa Barbara, CA 93117, GangYu@Uniax.com
Get access

Abstract

Two-dimensional passive photodiode matrices are hardly useful for image sensing due to the crosstalk between pixels. This crosstalk makes it difficult to recover information from individual pixels. A switching unit attached to each sensing unit has been the common solution in image sensors (such as in CMOS sensors and in TFT-PiN a-Si photosensors). A novel organic photodiode with voltage-switchable photosensitivity was developed recently. Passive photodiode matrices made with such organic photodiodes can be used for image sensing applications. This circuit simulation study demonstrates an effective scheme to extract images from passive photodiode matrices, concluding that individual photodiode parameters determine the contrast and resolution of N by M image sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, C. W. and VanSlyke, S. A., Appl. Phys. Lett. 51, p. 913915 (1987).Google Scholar
2. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L., and Holmes, A. B., Nature 347, p. 539541 (1990); R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund & W. R. Salaneck et al, Nature 397, p. 121–128 (1999).Google Scholar
3. Braun, D. and Heeger, A. J., Appl. Phys. Lett. 58, p. 19821984 (1991); G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, Nature 357, p. 477–479 (1992); Y. Yang, MRS Bulletin 22, p. 31–38 (1997).Google Scholar
4. Yu, G., Srdanov, G., Wang, J. and Heeger, A. J., Presentation B 12. 1, Spring Meeting of Materials Research Society, San Francisco, April 5 - 9 (1999).Google Scholar
5. Yu, G. and Cao, Y., US Provisional Patent Application: 60/055/840 (Aug. 15, 1997).Google Scholar
6. Yu, G., Wang, J., McElvain, J., and Heeger, A. J., Adv. Mater. 10 #17, p. 1431 (1998).Google Scholar
7. Sariciftci, N.S., Smilowitz, L., Heeger, A.J. and Wudl, F., Science 258, p. 1474 (1992); N.S. Sariciftci and A.J. Heeger, US Patent 5,333,183 (July 19, 1994); N.S. Sariciftci and A.J. Heeger, US Patent 5,454,880 (Oct 3, 1995).Google Scholar
8. Yu, G., Pakbaz, K., and Heeger, A.J., Appl. Phys. Letters 64, p. 3422 (1994); G. Yu, J. Gao, J.C. Hummelen, F. Wudl and A.J. Heeger, Science 270, p. 1789 (1995); G. Yu and A.J. Heeger, J. Appl. Phys. 78, p. 4510 (1995).Google Scholar
9. Halls, J.J.M., Walsh, C.A., Greenham, N.C., Marseglia, E.A., Friend, R.H., Moratti, S.C. and Holmes, A.B., Nature 376, p. 498 (1995).Google Scholar
10. Braun, D., Synth. Met. 92, p. 107113 (1998).Google Scholar
11. Braun, D., Rowe, J., and Yu, G., Proceedings of the 1998 International Conference on the Science and Technology of Synthetic Metals, Montpellier, Aug. 12-19, 1998, Synth. Met. in press (1999).Google Scholar