Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T17:48:40.816Z Has data issue: false hasContentIssue false

Simultaneous Spectroscopic, Diffraction and Microscopic Study of the Metal-Insulator Transition of VO2

Published online by Cambridge University Press:  21 May 2015

J. Laverock
Affiliation:
Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, U.S.A.
S. Kittiwatanakul
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, U.S.A.
A. A. Zakharov
Affiliation:
MAX-lab, Lund University, SE-221 00 Lund, Sweden
Y. R. Niu
Affiliation:
MAX-lab, Lund University, SE-221 00 Lund, Sweden
B. Chen
Affiliation:
Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, U.S.A.
J. Kuyyalil
Affiliation:
Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, U.S.A.
S. A. Wolf
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, U.S.A. Department of Physics, University of Virginia, Charlottesville, VA 22904, U.S.A.
J. W. Lu
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, U.S.A.
K. E. Smith
Affiliation:
Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, U.S.A. School of Chemical Sciences and The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Auckland, Auckland 1142, New Zealand
Get access

Abstract

We present a simultaneous photoemission spectroscopic, low-energy electron diffraction and low-energy electron microscopic study of the metal-insulator transition of strained VO2. The fraction of rutile structure is extracted from the microscopic measurements throughout the transition, and compared with the fraction of the metallic electrons from photoemission data. We find that at intermediate temperatures, while the system is predominantly monoclinic-like in structure, the electronic component of the transition is much further advanced. Our results provide direct evidence for a monoclinic-like metallic phase of VO2 that is easily accessible at ambient temperatures and pressures.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Morin, F. J., Phys. Rev. Lett. 3, 34 (1959).CrossRefGoogle Scholar
Mott, N. F., Metal-Insulator Transitions (Taylor & Francis Ltd, London, 1974).Google Scholar
Haverkort, M. W., Hu, Z., Tanaka, A., et al., Phys. Rev. Lett. 95, 196404 (2005).CrossRefGoogle Scholar
Arcangeletti, E., Baldassarre, L., Di Castro, D., et al., Phys. Rev. Lett. 98, 196406 (2007).CrossRefGoogle Scholar
Hsieh, W.-P., Trigo, M., Reis, D. A., et al., Appl. Phys. Lett. 104, 021917 (2014).CrossRefGoogle Scholar
Kim, H.-T., Lee, Y. W., Kim, B.-J., et al., Phys. Rev. Lett. 97, 266401 (2006).CrossRefGoogle Scholar
Kim, B.-J., Lee, Y. W., Choi, S., et al., Phys. Rev. B 77, 235401 (2008).CrossRefGoogle Scholar
Tao, Z., Han, T.-R.T., Mahanti, S. D., et al., Phys. Rev. Lett. 109, 166406 (2012).CrossRefGoogle Scholar
Cocker, T. L., Titova, L. V., Fourmaux, S., et al., Phys. Rev. B 85, 155120 (2012).CrossRefGoogle Scholar
Laverock, J., Kittiwatanakul, S., Zakharov, A. A., et al., Phys. Rev. Lett. 113, 216402 (2014).CrossRefGoogle Scholar
West, K. G., Lu, J., Yu, J., et al., J. Vac. Sci. Technol. A 26, 133 (2008).CrossRefGoogle Scholar
Kittiwatanakul, S., Laverock, J., Newby, J., , D., et al., J. Appl. Phys. 114, 053703 (2013).CrossRefGoogle Scholar
Kittiwatanakul, S., Wolf, S. A., and Lu, J., Appl. Phys. Lett. 105, 073112 (2014).CrossRefGoogle Scholar
Laverock, J., Piper, L. F. J., Preston, A. R. H., et al., Phys. Rev. B 85, 081104(R) (2012).CrossRefGoogle Scholar
Laverock, J., Preston, A. R. H., Newby, J., , D., et al., Phys. Rev. B 86, 195124 (2012).CrossRefGoogle Scholar
Piper, L. F. J., DeMasi, A., Cho, S. W., et al., Phys. Rev. B 82, 235103 (2010).CrossRefGoogle Scholar
Diebold, U., Surf. Sci. Rep. 48, 53 (2003).CrossRefGoogle Scholar
Sambi, M., Sangiovanni, G., Granozzi, G., et al., Phys. Rev. B 55, 7850 (1997).CrossRefGoogle Scholar
Liu, M. K., Wagner, M., Abreu, E., et al., Phys. Rev. Lett. 111, 096602 (2013).CrossRefGoogle Scholar
Liu, M. K., Wagner, M., Zhang, J., et al., Appl. Phys. Lett. 104 (2014).Google Scholar
Qazilbash, M. M., Tripathi, A., Schafgans, A. A., et al., Phys. Rev. B 83, 165108 (2011).CrossRefGoogle Scholar
Okazaki, K., Wadati, H., Fujimori, A., et al., Phys. Rev. B 69, 165104 (2004).CrossRefGoogle Scholar
Saeki, K., Wakita, T., Muraoka, Y., et al., Phys. Rev. B 80, 125406 (2009).CrossRefGoogle Scholar
Koethe, T. C., Hu, Z., Haverkort, M. W., et al., Phys. Rev. Lett. 97, 116402 (2006).CrossRefGoogle Scholar
Eguchi, R., Taguchi, M., Matsunami, M., et al., Phys. Rev. B 78, 075115 (2008).CrossRefGoogle Scholar
Kumar, S., Strachan, J. P., Pickett, M. D., et al., Adv. Mater., in print (2014).Google Scholar
Yao, T., Zhang, X., Sun, Z., et al., Phys. Rev. Lett. 105, 226405 (2010).CrossRefGoogle Scholar
Yuan, X., Zhang, W., and Zhang, P., Phys. Rev. B 88, 035119 (2013).CrossRefGoogle Scholar
van Veenendaal, M, Phys. Rev. B 87, 235118 (2013).CrossRefGoogle Scholar