Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T01:11:38.202Z Has data issue: false hasContentIssue false

Single Cu-O Layer Bismuth Strontium Cuprates: Crystal Growth and Electronic Properties

Published online by Cambridge University Press:  21 February 2011

L. F. Schneemeyer
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
J. V. Waszczak
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
R. M. Fleming
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
S. Martin
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
A. T. Fiory
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
S. A. Sunshine
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

The growth of single crystals of Bi2+xSr2−yCuO6±δ from alkali chloride fluxes, typically sodium chloride is reported. Electronic properties of the resultant crystals are controlled by the melt composition and the partial pressure of oxygen during growth. Superconducting crystals with Tc's near 10K are obtained under low oxygen partial pressures from melts which are strontium-rich. Measurements of transport, tunneling and magnetoconductivity in nonsuperconducting crystals show two-dimensional localization within the CuO2 planes. Superconductivity occurs only when transport perpendicular to the planes gives rise to extended states in three dimensions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Roth, R. S., et al., to be published.Google Scholar
[2] Schneemeyer, L. F., Dover, R. B. van, Glarum, S. H., Sunshine, S. A., Fleming, R. M., Batlogg, B., Siegrist, T., Marshall, J. H., Waszczak, J. V., and Rupp, L. W., Nature 332, 422 (1988).Google Scholar
[3] Michel, C., Hervieu, M., Borel, M. M., Grandin, A., Deslandes, F., Provost, J., and Raveau, B., Z. Phys. B 68,421 (1987).Google Scholar
[4] Akimitsu, J., Yamazaki, A., Sawa, H., and Fujiki, H., Jpn, J. Appl. Phys. 26, L2080 (1987).Google Scholar
[5] Torrance, J. B., Tokura, Y., LaPlaca, S. J., Huang, T. C., Savoy, R. J., and Nazzal, A. I., Solid State Commun. 66, 703 (1988).Google Scholar
[6] Tarascon, J.-M., McKinnon, W. R., Barboux, P., Hwang, D. M., Bagley, B. G., Greene, L. H., Hull, G. W., LePage, Y., Stoffel, N., and Giroud, M., Phys. Rev. B 38, 8885 (1988).Google Scholar
[7] Xiao, G., Cieplak, M. Z., and Chien, C. L., Phys. Rev. B 38, 11824 (1988).Google Scholar
[8] Casais, M. T., Cascales, C., Castro, A., Pedro, M. de, Rasines, I., Domarco, G., Maza, J., Miguelez, F., Ponte, J., Torron, C., Veira, J. A., Vidal, F., and Campa, J. A., Proc. European MRS, Strasbourg, France, Nov. 8–11, 1988.Google Scholar
[9] Onoda, M. and Sato, M., Solid State Commun. 67, 799 (1988).Google Scholar
[10] Torardi, C. C., Subramanian, M. A., Calabrese, J. C., Gopalakrishnan, J., McCarron, E. M., Morrissey, K. J., Askew, T. R., Flippen, R. B., Chowdhry, U., and Sleight, A. W., Phys. Rev. B 38, 225 (1988).Google Scholar
[11] Strobel, P., Kelleher, K., Holtzberg, F. and Worthington, T., Physica C 156, 434 (1988).Google Scholar
[12] Endo, U., Koyama, S. and Kawai, T., Jap. J. Appl. Phys. 27, L1476 (1988).Google Scholar
[13] Schneemeyer, L. F., Fleming, R. M., Martin, S., Fiory, A. T., Waszczak, J. V. and Sunshine, S. A., J. Crystal Growth, submitted.Google Scholar
[14] Fiory, A. T., Martin, S., Fleming, R. M., Schneemeyer, L. F., and Waszczak, J. V., Phys. Rev. Lett., submitted.Google Scholar
[15] Martin, S., Fiory, A. T., Fleming, R. M., Schneemeyer, L. F., and Waszczak, J. V., Phys. Rev. Lett. 60, 2194 (1988).Google Scholar