Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T10:17:31.018Z Has data issue: false hasContentIssue false

Single-Crystal Aluminum Nitride Substrate Preparation from Bulk Crystals

Published online by Cambridge University Press:  21 March 2011

J. Carlos Rojo
Affiliation:
Crystal IS, Inc., Latham, NY 12110
Leo J. Schowalter
Affiliation:
on sabbatical from the Physics, Applied Physics and Astronomy Dept., Rensselaer Polytechnic Institute, Troy, NY 12180
Kenneth Morgan
Affiliation:
Crystal IS, Inc., Latham, NY 12110
Doru I. Florescu
Affiliation:
Brooklyn College, Brooklyn, NY 11210
Fred H. Pollak
Affiliation:
Brooklyn College, Brooklyn, NY 11210
Balaji Raghothamachar
Affiliation:
SUNY, Stony Brook, NY 11794
Michael Dudley
Affiliation:
SUNY, Stony Brook, NY 11794
Get access

Abstract

Large (15mm diameter) single-crystal AlN boules have been prepared using sublimationrecondensation growth. X-ray topography shows that the dislocation density averages less than 103 cm2 in some of the substrates but also that the dislocations are not uniformly distributed. Also, strain due to the differential expansion with the crucible walls seems to cause severe cracking in the periphery of the crystal and high-strain regions. Thermal analysis using the Scanning Thermal Microscopy (SThM) reveals a thermal conductivity of 3.4 ± 0.2 W/K-cm, which is the largest value ever reported for AlN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Slack, G.A., Tanzilli, R.A., Pohl, R., Vandersande, J.W., J. Phys. Chem. Solids 48, 641 (1987)Google Scholar
[2] Witek, A., Diamond and Related Materials 7, 962 (1998)Google Scholar
[3] Slack, G.A., J. Phys. Chem. Solids 34, 321 (1973)Google Scholar
[4] Slack, G.A., McNelly, T.F., J. Crystal Growth 34, 263 (1976)Google Scholar
[5] Tanaka, M., Nakahata, s., Sogabe, K., Nakata, H., Tobioka, M., J. Appl. Phys. 36, L1062 (1997).Google Scholar
[6] Audurier, V., Demenet, J.L., Rabier, J., Philos. Mag. A, 77, 825 (1998).Google Scholar
[7] Azzaz, M., Michel, J.P., Feregotto, V., George, A.,Mater. Sci. Eng. B, B71, 30 (2000)Google Scholar
[8] Vaudo, R.P., Brandes, G.R., Flynn, J.S., Xu, X., Chriss, M.F., Christos, C.S., Keogh, D.M., Tamweber, F.D.. Proceedings of International Workshop on Nitride Semiconductors. Nagoya, Japan; 24-27 Sept. 2000; 15–18 p. 1002.Google Scholar
[9]Kalinina, E.V., Zubrilov, A.S., Kuznetsov, N.I., Nikitina, I.P., Tregubova, A.S., Shcheglov, M.P., V.Y. Bratus.Proc. of the ICSCRM '99; Research Triangle Park, NC, USA; 10-15 Oct., 1999; 338–342, 497 (2000).Google Scholar
[10] Avramenko, S.F., Valakh, M.Y., Kiselev, V.S., Skorokhod, M.Y.. Metallofizika i Noveishie Tekhnologii, 22, 33(2000)Google Scholar
[11] Lee, C.D., Ramachandran, V., Sagar, A., Feenstra, R.M., Greve, D.W., Sarney, W.L., Salamanca-Riba, L., Look, D.C., Song, B., Choyke, W.J., Devaty, R.P.. J. Electron. Mater 30, 162 (2001)Google Scholar
[12] Zheleva, T.S., Ok-Hyun, N., Ashmawi, W.M., Griffin, J.D., Davis, R.F.. J. Crystal Growth, 222, 706 (2001)Google Scholar
[13] Florescu, D.I., Asnin, V.M., Pollak, F.H., Compound Semiconductor 7(2) March, 62 (2001).Google Scholar
[14] Florescu, D.I., Pollak, F.H., Wide Bandgap Electronics, MRS Proc. Vol. 680E, ed: Kazior, T. E., Parikh, P., Nguyen, C., Yu, E. T. (2001) (accepted)Google Scholar