Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T10:08:19.521Z Has data issue: false hasContentIssue false

Site Dependent Hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation

Published online by Cambridge University Press:  15 May 2015

Pedro A. S. Autreto
Affiliation:
Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil.
Douglas S. Galvao
Affiliation:
Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil.
Get access

Abstract

Graphyne is a generic name for a carbon allotrope family of 2D structures, where acetylenic groups connect benzenoid rings, with the coexistence of sp and sp2 hybridized carbon atoms. In this work we have investigated, through fully atomistic reactive molecular dynamics simulations, the dynamics and structural changes of the hydrogenation of α, β, and γ graphyne forms. Our results showed that the existence of different sites for hydrogen bonding, related to single and triple bonds, makes the process of incorporating hydrogen atoms into graphyne membranes much more complex than the graphene ones. Our results also show that hydrogenation reactions are strongly site dependent and that the sp-hybridized carbon atoms are the preferential sites to chemical attacks. In our cases, the effectiveness of the hydrogenation (estimated from the number of hydrogen atoms covalently bonded to carbon atoms) follows the α, β, γ-graphyne structure ordering.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S. et al. , Science 306, 666 (2004).CrossRefGoogle Scholar
Smalley, R.E., Rev. Mod. Phys. 69, 723 (1997).CrossRefGoogle Scholar
Wallace, P., Phys. Rev. 71, 9 (1947).CrossRefGoogle Scholar
Sofo, J. O., Chaudari, A. S., and Barber, G. D., Phys. Rev. B 75, 153401(2007).CrossRefGoogle Scholar
Boukhvalov, D. W., Katnelson, M. I., and Lichtenstein, A. I., Phys. Rev. B 77, 035427 (2008).CrossRefGoogle Scholar
Flores, M. Z. S., Autreto, P. A. S., Legoas, S. B., and Galvao, D. S., Nanotechnology 20, 465704 (2009).CrossRefGoogle Scholar
Paupitz, R., Autreto, P. A. S., Legoas, S. B., Srinivasan, S. G., van Duin, A. C. T., and Galvao, D. S., Nanotechnology 24, 035706 (2013).CrossRefGoogle Scholar
Baughman, R., Eckhardt, H., and Kertesz, M., J. Chem. Phys. 87, 6687 (1987).CrossRefGoogle Scholar
Coluci, V. R., Braga, S. F., Legoas, S. B., Galvao, D. S., and Baughman, R. H., Phys. Rev. B 68, 035430 (2003).CrossRefGoogle Scholar
Coluci, V. R., Braga, S. F., Legoas, S. B., Galvao, D. S., and Baughman, R. H., Nanotechnology 15, S142 (2004).CrossRefGoogle Scholar
Malko, D., Neiss, C., Vines, F., and Gorling, A., Phys. Rev. Lett. 108, 086804 (2012).CrossRefGoogle Scholar
van Duin, A. C. T., Dasgupta, S., Lorant, F., and Goddard, W. A. III, J. Phys. Chem. A 105, 9396 (2001).CrossRefGoogle Scholar
van Duin, A. C. T. and Damste, J. S. S., Org. Geochem. 34, 515 (2003).CrossRefGoogle Scholar
Plimpton, S., J. Comp. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Autreto, P.A.S., de Sousa, J. M., and Galvao, D. S., Carbon 77, 829 (2014).CrossRefGoogle Scholar