Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T06:49:27.503Z Has data issue: false hasContentIssue false

Size Dependence of Second Harmonic Generation in Cdse Nanocrystals

Published online by Cambridge University Press:  10 February 2011

M. Jacobsohn
Affiliation:
Department of Physical Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel.
U. Banin
Affiliation:
Department of Physical Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel. Banin@chem.ch.huji.ac.il
Get access

Abstract

Second Harmonic Generation in CdSe nanocrystal quantum dots is observed by Hyper-Rayleigh scattering. We use a Ti-Sapphire femtosecond laser at 820 nm to induce the nonlinear optical response of the nanocrystals in solution. The unit cell normalized second harmonic coefficient βn, shows a substantial systematic enhancement in small sizes. The observed size dependence of the second harmonic generation process, is explained assuming two contributions. The first is a bulk-like contribution, from the non-centrosymmetric nanocrystal core, and the second, a contribution from the particle surface. The latter contribution is most significant in small nanocrystals with a substantial proportion of surface atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alivisatos, A.P., Science 271, 933 (1996).10.1126/science.271.5251.933Google Scholar
2. Brus, L.E., Appl. Phys. A53, 465 (1991).10.1007/BF00331535Google Scholar
3. Aktsipetrov, O.A., Elyutin, P.V., Fedyanin, A.A., Nikulin, A.A., and Rubtsov, A.N., Surf. Sci. 325, 343 (1995).10.1016/0039-6028(94)00747-0Google Scholar
4. Shen, Y. R., ‘The Principles of Nonlinear Optics’, (Wiley, New York, 1984).Google Scholar
5. Nirmal, M., Dabbousi, B.O., Bawendi, M.G., Macklin, J.J., and Brus, L.E., Nature 383, 802 (1996).10.1038/383802a0Google Scholar
6. Banin, U., Bruchez, M.P., Alivisatos, A.P., Ha, T.J., Weiss, S., and Chemla, D.S., J. Chem. Phys, 110, 1195 (1999).10.1063/1.478161Google Scholar
7. Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc. 115, 8706 (1993).10.1021/ja00072a025Google Scholar
8. Katari, J.E.B., Colvin, V.L., and Alivisatos, A.P., J. Phys. Chem. 98, 4109 (1994)10.1021/j100066a034Google Scholar
9. Clays, K., and Persoons, A., Rev. Sci. Instrum. 65, 2190 (1994); ibid 63, 3285 (1992).10.1063/1.1144725Google Scholar
10. Clays, K., and Persoons, A., Phys. Rev. Lett. 66,2980 (1991).10.1103/PhysRevLett.66.2980Google Scholar
11. Prasad, P.N., and Williams, D.J., ‘Introduction to Nonlinear Optical Effects in Molecules and Polymers’, (Wiley, New York, 1991).Google Scholar
12. Laidlaw, W.M., Denning, R.G., Verbiest, T., Chauchard, E., and Persoons, A., Nature 363, 58 (1993).10.1038/363058a0Google Scholar
13. Blanton, S.A., Leheny, R.L., Hines, M.A., and Guyot-Sionnest, P., Phys. Rev. Left. 79, 865 (1997).10.1103/PhysRevLett.79.865Google Scholar