Published online by Cambridge University Press: 21 May 2013
Physical vapor deposition, in combination with gas-aggregation (PVD-GA), is a controllable method for creation of diverse nanoparticle structures. Given the size effects that dominate the physics of nanoparticles, a particular advantage of the PVD-GA technique is the compatibility with in situ mass filtering of the nanocluster beam.
In the current work, PVD-GA has been utilized to deposit Ag and Si nanoparticles. Nanoparticles were analyzed using in situ quadrupole mass spectrometry (charge/mass ratio), atomic force microscopy (nanoparticle height), and transmission electron microscopy (nanocluster diameter & crystallinity). The results for particle size distribution were cross-correlated, with excellent agreement.
Different growth methods & conditions were explored, resulting in controlled differences in the measured particle size distributions and surface coverage. A novel growth configuration utilizing a conventional sputter source in combination with a linear magnetron allowed a significant (fivefold) increase in Ag cluster yield.