Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T10:00:46.422Z Has data issue: false hasContentIssue false

Size-dependence of Magnetic Properties of Bismuth Ferrite Nanopowders

Published online by Cambridge University Press:  21 March 2011

J. Li
Affiliation:
Department of Materials Science, Lanzhou University, Lanzhou 730000, China.
H. He
Affiliation:
Department of Materials Science, Lanzhou University, Lanzhou 730000, China.
F. Lü
Affiliation:
Department of Materials Science, Lanzhou University, Lanzhou 730000, China.
Y. Duan
Affiliation:
Department of Materials Science, Lanzhou University, Lanzhou 730000, China.
D. Song
Affiliation:
Department of Materials Science, Lanzhou University, Lanzhou 730000, China.
Get access

Abstract

A series of BiFeO3 nanopowders were prepared by the sol-gel process. X-ray diffraction analysis shows that their rhombohedral crystal symmetry remains unchanged. However, as the particle size decreases, the edge length of the unit cell increases markedly and the angle between the edges deviates increasingly from 60°. Magnetic measurements show obvious weak ferromagnetism. The magnetization and magnetic susceptibility increase with decreasing particle size. Mössbauer studies reveal that the spin canting angles in the smaller particles are bigger and have a wider distribution. The magnetic structure in these particles is a complicated uncompensated antiferromagnetic spin arrangement.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kisilev, S. V., Ozerov, R. P., and Zhdanov, G. S., Sov. Phys. Dokl. 7, 742 (1963).Google Scholar
2. Teague, J. R., Gerson, R., and James, W. J., Solid State Commun. 8, 1073 (1970).Google Scholar
3. Kaczmarek, W. and Pajak, Z., Solid State Commun. 17, 807 (1975).Google Scholar
4. Kaczmarek, W., Polomska, M., and Pajak, Z., Phys. Lett. A 47, 227 (1974).Google Scholar
5. Michel, C., Moreau, J. M., Achenbach, G. D., Gerson, R. and James, W. J., Solid State Commun. 7, 701 (1969).Google Scholar
6. Sosnowska, I., Peterlin-Neumaier, T., and Steichele, E., J. Phys. C: Solid State Phys. 15, 4835 (1982).Google Scholar
7. Achenbach, G. D., James, W. J., and Gerson, R., J. Amer. Ceram. Soc. 50, 437 (1967).Google Scholar
8. Blaauw, C. and van der Woude, F, J. Phys. C: Solid State Phys. 6, 1422 (1973).Google Scholar
9. Nakamura, S., Soeya, S., and Ikeda, N., J. Appl. Phys. 74(9), 5652 (1993).Google Scholar
10. Gabbasova, Z. V., Kuz'min, M. D., Zvezdin, A. K., Dubenko, I. S. Murashov, V. A., Rakov, D. N. and Krynetsky, I. B., Phys. Lett. A 158, 491 (1991).Google Scholar
11. Banerjee, B., Sharma, J., and Lahiry, S., Phys. Stat. Sol. B 105, 275 (1981).Google Scholar
12. Turov, E. A., Physical Properties of Magnetically Ordered Crystals, p. 108, Academic Press, New York and London (1965).Google Scholar
13. Anderson, P. W., Phys. Rev. 79, 350 (1950).Google Scholar
14. Moriya, T., Phys. Rev. 120 (1), 91 (1960).Google Scholar