Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T10:06:25.658Z Has data issue: false hasContentIssue false

Slow Relaxation of Spin-Cast Poly(methyl methacrylate) Confined in Thin Films

Published online by Cambridge University Press:  01 February 2011

Helen Richardson
Affiliation:
Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK
Michele Sferrazza
Affiliation:
Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK
Joseph L. Keddie
Affiliation:
Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK
Get access

Abstract

Although the volume relaxation of bulk homopolymer glasses is thoroughly understood, many questions remain about the volume relaxation of polymers cast from solvent. Furthermore, in polymer thin films, the possible effects of confinement, surfaces and interfaces on relaxation are largely unexplored. Measurements of the film thickness of spin-cast poly(methyl methacrylate) thin films over extended periods of time, using spectroscopic ellipsometry, reveal that the characteristic time for relaxation increases with film thickness. This result is consistent with the idea of enhanced molecular mobility in thin films, and it might reflect the conformation and a reduced extent of entanglements of the polymers when spin-cast from dilute solution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kovacs, A.J., Fortschr. Hochpolym.-Forsch. 3, 394 (1964).Google Scholar
2. Hodge, I. M., J. Non-Cryst. Sol. 169, 211 (1994).Google Scholar
3. Hutchinson, J.M. and Bucknall, C.B., Polym. Eng. Sci. 20, 173 (1980).Google Scholar
4. Hutchinson, J.M., Prog. Polym. Sci. 20, 703 (1995).Google Scholar
5. Kawana, S. and Jones, R.A.L., Eur. Phys. J. E 10, 223 (2003).Google Scholar
6. Reiter, G. and de Gennes, P.G., Eur. Phys. J. E 6, 25 (2001).Google Scholar
7. Jones, R.A.L., Curr. Opin. Coll. Interf. Sci. 4, 153 (1999).Google Scholar
8. Richardson, H., Carelli, C., Keddie, J.L. and Sferrazza, M., Eur. Phys. J. E, to appear.Google Scholar
9. de Gennes, P.G., Eur. Phys. J. E 7, 31 (2002).Google Scholar
10. McLoughlin, J.R. and Tobolsky, A.V., J. Polym. Sci. 6, 658 (1951).Google Scholar
11. Kanaya, T., Miyazaki, T., Watanabe, H. et al., Polymer 44, 3769 (2003).Google Scholar
12. Mukherjee, M., Battacharya, M., Sanyal, M.K. et al, Phys. Rev. E 66, 061801 (2002).Google Scholar
13. Keddie, J.L., Curr. Opin. Coll. Interf. Sci. 6, 102 (2001).Google Scholar
14. Richardson, H., Sferrazza, M. and Keddie, J.L., Eur. Phys. J. E Direct, 12, s01, 012 (2003).Google Scholar
15. Williams, G. and Watts, D.C., Trans. Faraday Soc. 66, 80 (1970).Google Scholar
16. McKenna, G.B., J. Phys. IV France 10, 53 (2000).Google Scholar
17. Parbhoo, B., Izrael, S., Salamanca, J.M., and Keddie, J.L., Surf. Interf. Anal. 29, 341 (2000).Google Scholar
18. Forrest, J.A., Svanberg, C., Revesz, K., Rodahl, M., Torell, L.M., and Kasemo, B., Phys. Rev. E 58, R1226 (1998).Google Scholar
19. Huang, D., Yang, Y., Zhuang, G., Binyao, L., Macromolecules 33, 461 (2000).Google Scholar
20. Strobl, G., The Physics of Polymers, 2nd Ed., (Springer, Berlin, 1997) pp. 6465.Google Scholar
21. Simon, S.L., Bernazzani, P., and McKenna, G.B., Polymer 44, 8025 (2003).Google Scholar