Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T10:10:31.276Z Has data issue: false hasContentIssue false

Sol-Gel Synthesis of Metal Oxide Clusters and Colloids

Published online by Cambridge University Press:  15 February 2011

J. Livage
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris, France
C. Sanchez
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris, France
P. Toledano
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris, France
Get access

Abstract

The hydrolysis and condensation of metal alkoxides M(OR)z allows the formation of oxopolymers or oxide colloids under mild conditions in solution. The molecular design of these precursors provides a chemical control over the formation of condensed phases. This can be conveniently performed via the chemical modification of alkoxides by nucleophilic species such as carboxylates or β-diketones. Condensation can be tailored with two chemical parameters; the hydrolysis ratio which leads to more condensed species and the amount of complexation which prevents condensation. Molecular clusters or colloidal particles can be obtained instead of precipitates. Moreover, non hydrolyzable complexing organic ligands lead to the formation of hybrid materials in which organic and inorganic moities are chemically bonded. These hybrid clusters and colloids are important starting points for producing solids and films with novel physical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brinker, C. J., Scherer, G. W., Sol-2el Science. (Academic press, New York, 1989).Google Scholar
2. Klein, L., Sol-gel technology for thin films. fibers, preforms, electronic and specialty shapes, (Noyes Pub., Park Ridge USA, 1988).Google Scholar
3. Livage, J., Henry, M., Sanchez, C., Progress in Solid State Chem. 18, 259 (1988).CrossRefGoogle Scholar
4. Schmidt, H., J. Non-Cryst. Solids, 73, 681 (1985).Google Scholar
5. Brinker, C. J., Scherer, G. W., J. Non-Cryst. Solids, 70, 301 (1985).Google Scholar
6. Stöber, W., Fink, A., J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
7. Bradley, D. C., Mehrotra, R. C., Gaur, D. P., Metal Alkoxides. (Academic Press, London, 1978)Google Scholar
8. Babonneau, F., Doeuff, S., Leaustic, A., Sanchez, C., Cartier, C., Verdaguer, M., Inorg. Chem. 27, 3166 (1988).Google Scholar
9. Barringer, E. A., Bowen, H. K., J. Am. Ceram. Soc. 65, C199 (1982).CrossRefGoogle Scholar
10. Barringer, E. A., Bowen, H. K., Langmuir, 1, 414 (1985).CrossRefGoogle Scholar
11. Caulton, K. G., Hubert-Pfalzgraf, L. G., Chem. Rev. 90, 969 (1990).Google Scholar
12. Hubert-Pfalzgraf, L. G., Papiernik, R., Massiani, M. C., Septe, B., Mat. Res. Soc. Symp. Proc. “Better ceramics through Chemistry IV” 180, 393 (1990).CrossRefGoogle Scholar
13. Hubert-Pfalzgraf, L. G., Poncelet, O., Daran, J. C., Mat. Res. Soc. Symp. Proc., “Better Ceramics through Chemistry IV” 180, 73 (1990).CrossRefGoogle Scholar
14. Kessler, V. G., Turova, N. Y., Yanovsky, A. I., Belokon, A. I., Struchkov, Y. T. (private communication).Google Scholar
15. Schmid, R., Mosset, A., Galy, J., J. Chem. Soc. Dalton Trans. 1999 (1991).Google Scholar
16. Vaartstra, B. A., Huffman, J. C., Gradeff, P. S., Hubert-Pfalzgraf, L. G., Daran, J. C., Parraud, S., Yunlu, K., Caulton, K. G., Inorg. Chem. 22, 3126 (1990).CrossRefGoogle Scholar
17. Toledano, P., Ribot, F., Sanchez, C., Acta Cryst. C 46, 1419 (1990).Google Scholar
18. Sanchez, C., Livage, J., New J. Chem. 14, 513 (1990).Google Scholar
19. Kundu, D., Ganguli, D., J. Mater. Sci. Lett. 5, 293 (1986).Google Scholar
20. Nabavi, M., Doeuff, S., Sanchez, C., Livage, J., J. Non-Cryst. Solids, 121, 31 (1990).Google Scholar
21. Poncelet, O., Hubert-Pfalzgraf, L. G., Daran, J. C., Astier, R., J. Chem. Com., 1846 (1989).Google Scholar
22. Hubert-Pfalzgraf, L. G., Khorkh, N. El, Daran, J. C., Polyhedron, 11, 59 (1992).CrossRefGoogle Scholar
23. Eichorst, D. J., Payne, D. A., Wilson, S. R., Howard, K. E., Inorg. Chem. 29, 1458 (1990).Google Scholar
24. Doeuff, S., Henry, M., Sanchez, C., Livage, J., J. Non-Cryst. Solids, 89, 206 (1987).Google Scholar
25. Mehrotra, R. C., Bohra, R., Gaur, D. P., Metal β-diketonates and allied derivatives, (Academic Press, London, 1978).Google Scholar
26. Leaustic, A., Babonneau, F., Livage, J., Chem. of Mater. 1, 240 1989).Google Scholar
27. Watenpaugh, K., Caughlan, C. N., Chem. Com. 76 (1967).CrossRefGoogle Scholar
28. Day, V. W., Eberspacher, T. A., Klemperer, W. G., Woo-Park, C., Rosenberg, F. S., in Chemical processing of advanced materials, edited by Hench, L. L. and J. West (J. Wiley Pub., New York) (in press).Google Scholar
29. Doeuff, S., Dromzee, Y., Sanchez, C., C. R. Acad. Sci. Fr. 308, 1409 (1989).Google Scholar
30. Smith, G. D., Caughlan, C. N., Campbell, J. A., Inorg. Chem. 11, 2989 (1972).Google Scholar
31. Toledano, P., In, M., Sanchez, C., C. R. Acad. Sci. Fr. 313, 1247 (1991).Google Scholar
32. Toledano, P., In, M., Sanchez, C., C. R. Acad. Sci. Fr. 311 (1990) 1161.Google Scholar
33. Toledano, P. (private communication).Google Scholar
34. Rinn, G., Schmidt, H., Ceramic Transactions, Messing, G. L., Fuller, E. R., Hansner, H. Eds., Am. Ceram. Soc. Pub. 1 (1988) 23.Google Scholar
35. Toledano, P., Ribot, F., Sanchez, C., C. R. Acad. Sci. Fr. 311, 1315 (1990).Google Scholar
36. Ribot, F., Toledano, P., Sanchez, C., Chem. Mater. 3, 759 (1991).Google Scholar
37. Livage, J., Barboux, P., Nabavi, M., Judeinstein, P., Mat. Res. Soc. Symp. Proc. “Solid State Ionics”, 135, 131 (1989).CrossRefGoogle Scholar