Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T06:36:58.420Z Has data issue: false hasContentIssue false

Sol-Gel Synthesis of Thick Ta2O5 Films for Photonic Band Gap Materials

Published online by Cambridge University Press:  01 February 2011

Nicholas Ndiege
Affiliation:
ndiege@uiuc.edu, University of Illinois, Chemistry, 294 RAL, 600 S. Mathews ave., Urbana, IL, 61801, United States, 217 333 6666
Tabitha Wilhoite
Affiliation:
wilhoite@uiuc.edu, University of Illinois, Chemistry, Urbana, IL, 61801, United States
Vaidyanathan Subramanian
Affiliation:
vsubrmnn@uiuc.edu, University of Illinois, Chemical & Biomolecular Engineering, Urbana, IL, 61801, United States
Mark Shannon
Affiliation:
mshannon@uiuc.edu, University of Illinois, Urbana, IL, 61801, United States
Rich Masel
Affiliation:
r-masel@uiuc.edu, University of Illinois, Chemical & Biomolecular Engineering, Urbana, IL, 61801, United States
Get access

Abstract

Advances in microelectromechanical systems has generated an ever growing demand for novel insulating material applicable to high temperature systems. Photonic bandgap materials are appealing for such applications, specifically Ta2O5 due to its high index of refraction, refractory nature and negligible absorbance in the infrared region. The challenge faced in the realization of such materials is the synthesis of crack free Ta2O5 films whose thickness is in the order of a quarter wavelength of the incident infrared radiation.

This work seeks to investigate the effect of addition of polyvinyl pyrollidone (PVP) as a binder material in the sol gel synthesis of thick, uniform and crack free Ta2O5 films. Incorporation of PVP into the sol precursor has enabled uniform and crack free films with thicknesses of up to 2.4 microns to be realized. Chemical probing of the precursor was conducted via TGA, FTIR, and NMR analysis of the sol to elucidate the processes behind this film formation. The calcined oxide films were characterized via SEM, XRD and XPS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ganley, J. C.; Seebauer, E. G.; Masel, R. I., Porous anodic alumina microreactors for production of hydrogen from ammonia. Aiche Journal 2004, 50, (4), 829834.Google Scholar
2 Ganley, J. C.; Thomas, F. S.; Seebauer, E. G.; Masel, R. I., A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia. Catalysis Letters 2004, 96, (3–4), 117122.Google Scholar
3 Fleming, J. G.; Lin, S. Y.; El-Kady, I.; Biswas, R.; Ho, K. M., All-metallic threedimensional photonic crystals with a large infrared bandgap. Nature 2002, 417, (6884), 5255.Google Scholar
4 Hass, D. D. P., , D.; Glass, D. E.; Wiedemann, K. E Reflective Coating on Fibrous Insulation for Reduced Heat Transfer; August, 1997; ppp.Google Scholar
5 Viskanta, R., Overview of convection and radiation in high temperature gas flows. International Journal of Engineering Science 1998, 36, (12–14), 16771699.Google Scholar
6 Mir, J. M.; Agostinelli, J. A., Optical Thin-Films for Wave-Guide Applications. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 1994, 12, (4), 14391445.Google Scholar
7 Ozer, N.; Lampert, C. M., Structural and optical properties of sol-gel deposited proton conducting Ta2O5 films. Journal of Sol-Gel Science and Technology 1997, 8, (1–3), 703709.Google Scholar
8 Ezhilvalavan, S.; Tseng, T. Y., Preparation and properties of tantalum pentoxide (Ta2O5) thin films for ultra large scale integrated circuits (ULSIs) application – A review. Journal of Materials Science-Materials in Electronics 1999, 10, (1), 931.Google Scholar
9 Chaneliere, C.; Autran, J. L.; Devine, R. A. B.; Balland, B., Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Materials Science & Engineering R-Reports 1998, 22, (6), 269322.Google Scholar
10 Beinhorn, F.; Ihlemann, J.; Simon, P.; Marowsky, G.; Maisenholder, B.; Edlinger, J.; Neuschafer, D.; Anselmetti, D., Sub-micron grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation. Applied Surface Science 1999, 139, 107110.Google Scholar
11 Kukli, K.; Aarik, J.; Aidla, A.; Kohan, O.; Uustare, T.; Sammelselg, V., Properties of Tantalum Oxide Thin-Films Grown by Atomic Layer Deposition. Thin Solid Films 1995, 260, (2), 135142.Google Scholar
12 Corbella, C. V. M.; Pinyol, A.; Porqueras, C.; Person, C.; Bertran, E., Influence of the porosity of RF sputtered Ta2O5 thin films on their optical properties for electrochromic applications. Solid State Ionics 2003, 165, 1522.Google Scholar
13 Toki, K.; Kusakabe, K.; Odani, T.; Kobuna, S.; Shimizu, Y., Deposition of SiO2 and Ta2O5 films by electron-beam-excited plasma ion plating. Thin Solid Films 1996, 282, (1–2), 401403.Google Scholar
14 Werder, D. J.; Kola, R. R., Microstructure of Ta2O5 films grown by the anodization of TaNx. Thin Solid Films 1998, 323, (1–2), 69.Google Scholar
15 Joshi, P. C.; Cole, M. W., Influence of postdeposition annealing on the enhanced structural and electrical properties of amorphous and crystalline Ta2O5 thin films for dynamic random access memory applications. Journal of Applied Physics 1999, 86, (2), 871880.Google Scholar
16 Liu, L.; Wang, Y.; Gong, H., Annealing effects of tantalum films on Si and SiO2/Si substrates in various vacuums. Journal of Applied Physics 2001, 90, (1), 416420.Google Scholar
17 Kozuka, H.; Takenaka, S.; Tokita, H.; Okubayashi, M., PVP-assisted sol-gel deposition of single layer ferroelectric thin films over submicron or micron in thickness. Journal of the European Ceramic Society 2004, 24, (6), 15851588.Google Scholar
18 Kozuka, H.; Kajimura, M.; Hirano, T.; Katayama, K., Crack-free, thick ceramic coating films via non-repetitive dip-coating using polyvinylpyrrolidone as stressrelaxing agent. Journal of Sol-Gel Science and Technology 2000, 19, (1–3), 205209.Google Scholar
19 Chen, W.; Zhang, J. Y.; Fang, Q.; Li, S.; Wu, J. X.; Li, F. Q.; Jiang, K., Sol-gel preparation of thick titania coatings aided by organic binder materials. Sensors and Actuators B-Chemical 2004, 100, (1–2), 195199.Google Scholar
20 Chen, Y. Y.; Wei, W. C. J., Formation of mullite thin film via a sol-gel process with polyvinylpyrrolidone additive. Journal of the European Ceramic Society 2001, 21, (14), 25352540.Google Scholar
21 Jia, Q. X.; Mccleskey, T. M.; Burrell, A. K.; Lin, Y.; Collis, G. E.; Wang, H.; Li, A. D. Q.; Foltyn, S. R., Polymer-assisted deposition of metal-oxide films. Nature Materials 2004, 3, (8), 529532.Google Scholar
22 Kishimoto, T.; Kozuka, H., Sol-gel preparation of TiO2 ceramic coating films from aqueous solutions of titanium sulfate (IV) containing polyvinylpyrrolidone. Journal of Materials Research 2003, 18, (2), 466474.Google Scholar
23 Subramanian, V. N., , N.; Seebauer, E. G.; Shannon, M. A.; Masel, R. I., Synthesis of PVP assisted Ta2O5 Films and its Characterization. Thin Solid Films 2005, in press.Google Scholar
24 Fidalgo, A.; Ilharco, L. M., Thickness, morphology and structure of sol-gel hybrid films: I – The role of the precursor solution's ageing. Journal of Sol-Gel Science and Technology 2003, 26, (1–3), 363367.Google Scholar
25 Smith, B., Infrared Spectral Interpretation: A systematic Approach. ed.; CRC Press: Boca Raton, Florida (USA), 1999; ‘Vol.“ p.Google Scholar
26 Coates, J., Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry, ed.;Meyers, R. A., ‘Ed.’ ‘Eds.’ John Wiley & Sons, Ltd: Chichester, 2000; ‘Vol.’ ppp 1081510837.Google Scholar
27 Phule, P. P., Sol-Gel Synthesis of Ferroelectric Lithium Tantalate Ceramics – Ftir Investigation of the Molecular Modification of Tantalum Ethoxide. Journal of Materials Research 1993, 8, (2), 334338.Google Scholar
28 Kozuka, H.; Higuchi, A., Single-layer submicron-thick BaTiO3 coatings from poly(vinylpyrrolidone)-containing sols: Gel-to-ceramic film conversion, densification, and dielectric properties. Journal of Materials Research 2001, 16, (11), 31163123.Google Scholar
29 Kelly, P. V.; Mooney, M. B.; Beechinor, J. T.; O'Sullivan, B. J.; Hurley, P. K.; Crean, G. M.; Zhang, J. Y.; Boyd, I. W.; Paillous, M.; Jimenez, C.; Senateur, J. P., Ultraviolet assisted injection liquid source chemical vapour deposition (UVILSCVD) of tantalum pentoxide. Advanced Materials for Optics and Electronics 2000, 10, (3–5), 115122.Google Scholar
30 Kim, Y.; Chae, H. K.; Lee, K. S.; Lee, W. I., Preparation of SiBi2Ta2O9 thin films with a single alkoxide sol-gel precursor. Journal of Materials Chemistry 1998, 8, (11), 23172319.Google Scholar
31 Werndrup, P.; Verdenelli, M.; Chassagneux, F.; Parola, S.; Kessler, V. G., Powders and dense thin films of late transition metal oxide nanocomposites from structurally characterized single-source precursors. Journal of Materials Chemistry 2004, 14, (3), 344350.Google Scholar
32 Clem, P. G.; Jeon, N. L.; Nuzzo, R. G.; Payne, D. A., Monolayer-mediated deposition of tantalum(V) oxide thin film structures from solution precursors. Journal of the American Ceramic Society 1997, 80, (11), 28212827.Google Scholar
33 Brinker, C. J.; Scherer, G. W., Sol-gel science-the physics and chemistry of solgel processing. Academic press, inc. 1250 sixth avenue, San Diego, CA, 92101 1990.Google Scholar
34 Hubert-Pfalzgraf, L. G., Toward molecular design of homo and heterometallic precursors of lanthanide oxide-based materials. New J. Chem 1995, 19, 727750.Google Scholar
35 Nakagawa, K.; Wang, F. M.; Murata, Y.; Adachi, M., Effect of acetylacetone on morphology and crystalline structure of nanostructured TiO2 in titanium alkoxide aqueous solution system. Chemistry Letters 2005, 34, (5), 736737.Google Scholar
36 Maslosh, V. Z.; Kotova, V. V.; Maslosh, O. V., Effect of acetylacetone on the residual content of formaldehyde in urea-formaldehyde resin. Russian Journal of Applied Chemistry 2002, 75, (8), 13691370.Google Scholar