Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T01:05:10.926Z Has data issue: false hasContentIssue false

Solid State NMR Studies of the Adsorbed States of Formic Acid on Y Zeolites

Published online by Cambridge University Press:  15 February 2011

T. Michael Duncan
Affiliation:
California Institute of TechnologyDivision of Chemistry and Chemical Engineering, Pasadena, CA 91125
Robert W. Vaughan
Affiliation:
California Institute of TechnologyDivision of Chemistry and Chemical Engineering, Pasadena, CA 91125
Get access

Abstract

Several multiple-pulse double-resonance NMR techniques have been applied to isolate and characterize the spectra of the adsorbed states of formic acid on two Y zeolites. The two surface states, bidentatT3 and ynidentate, possess different motional properties and 13C - H cross-polarization techniques may be used to separate the spectra. The 13C chemical shift anisotropy is founa to iorrelate with the symmetry of the formate species. The H spectrum of the carbonyl hydrogen, selectively observed with the dipolardifference method, indicates that this hydrogen becomes more acidic upon adsorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Duncan, T. M. and Vaughan, R. W., J. Catalysis, Vol. 67, No. 1, 1981 and references cited therein.Google Scholar
2. Vaughan, R. W., Elleman, D. D., Stacey, L. M., Rhim, W. K. and Lee, J. W., Rev. Sci. Instrum. 43, 1356 (1972).Google Scholar
3. Stoll, M. E., Vega, A. J. and Vaughan, R. W., Rev. Sci. Instrum. 48, 800 (1977).Google Scholar
4. Carr, H. Y. and Purcell, E. M., Phys. Rev. 49, 630 (1954).CrossRefGoogle Scholar
5. Pines, A., Gibby, M. G. and Waugh, J. S., J. Chem. Phys. 59, 569 (1973).Google Scholar
6. Stoll, M. E., Vega, A. J. and Vaughan, R. W., J. Chem. Phys. 65, 4093 (1976).Google Scholar
7. Reimer, J. A. and Vaughan, R. W., Chem. Phys. Lett. 63, 163 (1979).CrossRefGoogle Scholar
8. Vaughan, R. W., Ann. Rev. Phys. Chem. 29, 397 (1978).CrossRefGoogle Scholar
9. Mehring, M., NMR - Basic Principles and Progress, Vol. 11, (Diehl, P., Fluck, E. and Kosfeld, R., Eds.) Springer - Verlag, New York, 1976.Google Scholar
10. Haeberlin, U., Adv. in Magn. Resonance, Supp 1. (Waugh, J. S., ed.) Academic Press, New York, 1976.Google Scholar
11. Ackerman, J. L., Tegenfeldt, J. and Waugh, J. S., J. Amer. Chem. Soc. 96, 6843 (1974).Google Scholar
12. Duncan, T. M. and Vaughan, R. W., J. Catalysis, Vol. 67, No. 1, 1981.Google Scholar
13. Vanderhart, D. L., Gutowsky, H. S. and Farrer, T. C., J. Amer. Chem. Soc. 89, 5056 (1967);Google Scholar
13a Vanderhart, D. L., Ph.D. Thesis, U. of Illinois, 1968.Google Scholar
14. Kerr, G. T., J. Catalysis 15, 200 (1969).Google Scholar