Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T03:59:57.429Z Has data issue: false hasContentIssue false

Solid state PbS Quantum dots /TiO2 Nanoparticles heterojunction solar cell

Published online by Cambridge University Press:  23 April 2012

Lioz Etgar*
Affiliation:
Laboratoire de Photonique et Interfaces, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland.
Michael Grätzel
Affiliation:
Laboratoire de Photonique et Interfaces, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland.
Get access

Abstract

Solid state PbS Quantum Dots (QDs)/TiO2 Nanoparticles heterojunction solar cells were produced by depositing PbS QDs on a 500nm thick Mesoscopic TiO2 films using layer-by-layer deposition. The heterojunction solar cells show photovoltaic response from the visible to the near infra-red region. Importantly, the PbS QDs act here as photosensitizers and at the same time as hole conductors. The PbS QDs/TiO2 device produces a remarkable short circuit photocurrent (Jsc) of 16.3 mA/cm2, an open circuit photovoltage (Voc) of 0.54 V and a fill factor (FF) of 0.41, corresponding to a light to electric power conversion efficiency (η) of 4.04% under 0.9 sun intensity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Reiko, Y. O., Shigeru, N.; Masahiro, M., Masaki, O., Yusuke, S., Kazuhiro, N., Appl. Phys. Lett. 94, 073308, (2009).Google Scholar
2. Martinson, A. B. F., Goes, M. S., Fabregat-Santiago, F., Bisquert, J., Pellin, M. J., Hupp, J. T. J. Phys. Chem. A. 113, 4015, (2009).Google Scholar
3. Sun, J., Goldys, E. M. J. Phys. Chem. C. 112, 92619266, (2008).Google Scholar
4. Hanewinkel, B., Knorr, A., Thomas, P., Koch, S. W. Phys. Rev. B. 55, 1371513725, (1997).Google Scholar
5. Nozik, A. J. Chem. Phys. Lett. 457, 311, (2008).Google Scholar
6. Jonhston, K. W., Pattantyus-Abraham, A. G., Clifford, J. P., Myrskog, S. H., MacNeil, D. D., Levina, L., Sargent, E. H. Appl. Phys. Lett. 92, 151115, (2008).Google Scholar
7. Luther, J. M., Law, M., Beard, M. C., Song, Q., Reese, M. O., Ellingson, R. J., Nozik, A. J. Nano lett. 8, 3488, (2008).Google Scholar
8. Ma, W., Luther, J. M., Zheng, H., Wu, Y., Alivisatos, A. P. Nano lett. 9, 1699, (2009).Google Scholar
9. Hyun, B.-R.; Zhong, Y.-W.; Bartnik, A. C.; Sun, L.; Abruňa, H. D.; Wise, F. W.; Goodreau, J. D., Matthews, J. R., Leslie, T. M., Borrelli, F. ACS Nano. 2, 2206, (2008).Google Scholar
10. Lee, H., Leventis, H. C., Moon, S.-J., Chen, P., Ito, S., Haque, S. A., Torres, T., Nüesch, F., Geiger, T., Zakeeruddin, S. M., Grätzel, M, Nazeeruddin, M. K. Adv. Func. Mater. 19, 2735, (2009).Google Scholar
11. Plass, R., Pelet, S., Krueger, J., Grätzel, M, Bach, U. J. Phys. Chem. B., 106, 7578, (2002).Google Scholar
12. Sun, B., Findikoglu, A. T., Sykora, M., Werder, D. J., Klimov, V. I. Nano lett. 9, 1235, (2009).Google Scholar
13. Luther, J. M., Law, M., Song, Q., Perkins, C. L., Beard, M. C., Nozik, A. J. ACS Nano, 2, 271, (2008).Google Scholar
14. Zhang, S., Cyr, P. W., McDonald, S. A., Konstantatos, G., Sargent, E. H. Appl. Phys. Lett., 87, 233101, (2005).Google Scholar
15. Cui, D., Xu, J.; Zhu, T., Paradee, G., Ashok, S., Gerhold, M. Appl. Phys. Lett., 88, 138111, (2006).Google Scholar
16. Seo, J., Kim, S. J., Kim, W. J., Singh, R., Samoc, M., Cartwright, A. N., Prasad, P. N. Nanotechnology, 20, 95202, (2009).Google Scholar
17. Sholin, V., Breeze, A. J., Anderson, I. E., Reddy, D., Carter, S. A. Sol. Energy Mater. Sol. Cells, 92, 1706, (2008).Google Scholar
18. Luther, Joseph M., Gao, Jianbo, Lloyd, Matthew T., Semonin, Octavi E., Beard, Matthew C., and Nozik, Arthur J., Adv. Mater., 22, 37043707, (2010).Google Scholar
19. Pattantyus-Abraham, Andras G., Kramer, Illan J., Barkhouse, Aaron R., Wang, Xihua, Konstantatos, Gerasimos, Debnath, Ratan, Levina, Larissa, Raabe, Ines, Nazeeruddin, Mohammad K., Gratzel, Michael, and Sargent, Edward H., Nano, 2010 ACS Nano., 4(6), 3374–80, (2010).Google Scholar
20. Koleilat, G. I., Levina, L., Shukla, H.; Myrskog, S. H., Hinds, S., Pattantyus-Abraham, A. G., Sargent, E. H. ACS Nano, 2, 833, (2008).Google Scholar
21. Ratan, D., Jiang, T., Barkhouse, D. A., Xihua, W., Andras, G. P.-A., Lukasz, B., Larissa, L., and Sargent, Edward H., J. Amer. Chem. Soc., 132, 5952, (2010).Google Scholar
22. Evans, C. M., Guo, L., Peterson, J. J., Maccagnano-Zacher, S., Krauss, T. D., Nano Lett., 8, 2896, (2008).Google Scholar
23. Kovalenko, M. V., Talapin, D. V., Loi, M. A., Cordella, F., Hesser, G., Bodnarchuk, M. I., Heiss, W., Angew. Chem. Int. Ed., 47, 3029, (2008).Google Scholar
24. Schaller, R.D. and Klimov, V.I., Physical Review Letters, 92(18) 186601–1, (2004).Google Scholar
25. Lazzeri, M., Vittadini, A., Selloni, A., Phys Rev. B, 63, (2001).Google Scholar
26. Liu, Yao, Gibbs, Markelle, Puthussery, James, Gaik, Steven, Ihly, Rachelle, Hillhouse, Hugh W., and Law, Matt, Nano letters, 10, 19601969, (2010).Google Scholar