No CrossRef data available.
Published online by Cambridge University Press: 29 May 2013
The thermal conductance of a gold/water interface has been found to change as a function of the surrounding’s adhesion energy. We measure the thermal conductance of a lithographically prepared gold nanowire with a thin film nanoscale thermal sensor composed of AlGaN:Er3+. The temperature of the nanowire is measured as a function of incident laser intensity. The slope of this plot is inversely proportional to the thermal conductance of the nanoparticle/surrounding’s interface. We show that the conductance of the nanoparticle/water interface increases with the molality of the solution. This was tested with multiple solutes including NaCl, and D-Glucose. The interfacial conductance of pure water is reported to be 44 MW/m2K and the conductance saturates to 100 MW/m2K at a molality of 0.21 m.