Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T00:56:34.116Z Has data issue: false hasContentIssue false

Solution-Based Synthesis of Manganese Oxide Cathodes for Lithium Batteries

Published online by Cambridge University Press:  10 February 2011

A. Manthiram
Affiliation:
Texas Materials Institute, ETC 9.104, The University of Texas at Austin, Austin, TX 78712
J. Kim
Affiliation:
Texas Materials Institute, ETC 9.104, The University of Texas at Austin, Austin, TX 78712
S. Choi
Affiliation:
Texas Materials Institute, ETC 9.104, The University of Texas at Austin, Austin, TX 78712
Get access

Abstract

With an objective to overcome the cyclability problems of manganese oxides, solution-based procedures are pursued to synthesize metastable manganese oxides. Reduction of permanganate with lithium iodide in an acetonitrile medium followed by heating at 250 °C in vacuum gives an amorphous lithium sodium manganese oxyiodide that is intimately mixed with crystalline NaIO3. On the other hand, oxidation of manganese acetate with lithium or hydrogen peroxide in presence of lithium hydroxide followed by firing at T < 500 °C gives the metastable spinel oxides, Li4Mn5O12 and Li2Mn4O9-δ. The amorphous manganese oxide exhibits excellent cyclability with a capacity > 275 mAh/g at 4.3-1.5 V. The presence of NaIO3 and a unique microstructure are found to play a critical role in the electrochemical properties. Although Li4Mn5O12 could be achieved without much oxygen vacancies, Li2Mn4O9-δ has significant amount of oxygen vacancies with δ > 0.35. Both Li4Mn5O12 and Li2Mn4O9-δ exhibit capacities around 150 mAh/g with good cyclability in the 3 V region.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scrosati, B., Nature 373, 557(1995).Google Scholar
2. Lave, L. B., Henrickson, C. T. and McMichael, F. C., Science 268, 993(1995).Google Scholar
3. Lithium Battery Energy Storage (LIBES) Publication, Technological Research Association, Tokyo, 1994.Google Scholar
4. Whittingham, M. S. and Jacobson, A. J., Intercalation Chemistry, (Academic Press, New York, 1982).Google Scholar
5. Linden, D., Handbook of Batteries, 2nd Edition, edited by Linden, D. (McGraw-Hill, New York, 1995) p. 14.1.Google Scholar
6. Thackeray, M. M., David, W. I. F., Bruce, P. G. and Goodenough, J. B., Mater. Res. Bull. 18 461(1983).Google Scholar
7. Tarascon, J. -M., McKinnon, W. R., Coowar, F., Bowmer, T. N., Amatucci, G. G., Guyomard, D., J. Electrochem. Soc. 141, 1421(1994).Google Scholar
8. Thackeray, M. M., Shao-Horn, Y., Kahaian, A. J., Kepler, K. D., Skinner, E., Vaughey, J. T. and Hackney, S. A., Electrochem. Solid State Lett. 1, 7 (1998).Google Scholar
9. Gummow, R. J., Liles, D. C. and Thackeray, M. M., Mater. Res. Bull. 28, 1249(1993).Google Scholar
10. Armstrong, A. R. and Bruce, P. G., Nature 381, 499(1996).Google Scholar
11. Vitins, G. and West, K., J. Electrochem. Soc. 142, 2558(1995).Google Scholar
12. Gummow, R. J. and Thackeray, M. M., J. Electrochem. Soc. 141, 1178(1994).Google Scholar
13. Croguennec, L., Deniard, P., Brec, R., Biesan, P., and Broussely, M., Solid State Ionics 89, 127(1996).Google Scholar
14. de Kock, A., Rossouw, M. H.. Picciotto, L. A. de, Thackeray, M. M., David, W. I. F. and Ibberson, M. R., Mater. Res. Bull. 25, 657(1990).Google Scholar
15. Thackeray, M. M., De Kock, A., Rossouw, M. H., Liles, D. C., Hoge, D. and Bittihn, R., J. Electrochem. Soc. 139 363(1992).Google Scholar
16. Thackeray, M. M., Rossouw, M. H., de Kock, A. and de la Harpe, A. P., J. Power Sources 43–44, 289 (1993).Google Scholar
17. Thackeray, M. M. and de Kock, A., Mater. Res. Bull. 28, 1041(1993).Google Scholar
18. Gummow, R. J., De Kock, A. and Thackeray, M. M., Solid State Ionics 69, 59(1994).Google Scholar
19. Thackeray, M. M., Mansuetto, M. F., Dees, D. W. and Vissers, D. R., Mater. Res. Bull. 31, 133(1996).Google Scholar
20. Gao, Y. and Dahn, J. R., J. Electrochem. Soc. 143, 1783(1996).Google Scholar
21. Takada, T., Hayakawa, H. and Akiba, E., J. Solid State Chem. 115, 420(1995).Google Scholar
22. Thackeray, M. M., Mansuetto, M. F. and Johnson, C. S., J. Solid State Chem. 125, 274(1996).Google Scholar
23. Kim, J. and Manthiram, A., Nature 390, 265(1997).Google Scholar
24. Kim, J. and Manthiram, A., Electrochem. Solid State Lett. 2, 55(1999).Google Scholar
25. Kim, J. and Manthiram, A., J. Electrochem. Soc. 145, L53 (1998).Google Scholar
26. Choi, S. and Manthiram, A., Electrochem. Solid State Lett. (submitted).Google Scholar
27. Tsang, C. and Manthiram, A., Solid State Ionics 89, 305(1996).Google Scholar
28. Xu, J. J., Kinser, A. J., Owens, B. B. and Smyrl, W. H., Electrochem. Solid State Lett. 1, 1 (1998).Google Scholar